
Fusing Approximate Knowledge from
Distributed Sources∗

Barbara Dunin-Kȩplicz and Linh Anh Nguyen and Andrzej Szałas

Abstract In this paper we investigate a technique for fusing approximate knowl-
edge obtained from distributed, heterogeneous information sources. We use a gen-
eralization of rough sets and relations [14], which depends on allowing arbitrary
similarity relations. The starting point of this research is [2], where a framework for
knowledge fusion in multi-agent systems is introduced. Agent’s individual percep-
tual capabilities are represented by similarity relations, further aggregated to express
joint capabilities of teams. This aggregation, allowing a shift from individual to so-
cial level, has been formalized by means of dynamic logic. The approach of [2] uses
the full propositional dynamic logic, not guaranteeing the tractability of reasoning.
Therefore the results of [11, 12, 13] are adapted to provide a technical engine for
tractable approximate database querying restricted to a Horn fragment of serial PDL.
We also show that the obtained formalism is quite powerful in applications.

1 Similarities and Approximate Reasoning

In this paper we investigate a technique for fusing approximate knowledge obtained
from distributed information sources. This issue is substantial in modeling multi-
agent systems, where a group of loosely coupled heterogeneous agents cooperate in

B. Dunin-Kȩplicz
Institute of Informatics, Warsaw University, Poland and ICS, Polish Academy of Sciences, Poland
e-mail: keplicz@mimuw.edu.pl

L.A. Nguyen
Institute of Informatics, Warsaw University, Poland
e-mail: nguyen@mimuw.edu.pl

A. Szałas
Institute of Informatics, Warsaw University, Poland and IDA, Linköping University, Sweden
e-mail: andsz@mimuw.edu.pl

∗ Supported by the MNiSW grants N N206 399134 and N N206 399334.

1

2 B. Dunin-Kȩplicz, L.A. Nguyen and A. Szałas

achieving a common goal. Information exchange, leading ultimately to knowledge
fusion, is a natural and vital ingredient of this process. We use a generalization of
rough sets and relations [14], which depends on allowing arbitrary similarity rela-
tions, while in [14] only equivalence relations are considered. In order to approx-
imate relations one uses here a covering of the underlying domain by similarity-
based neighborhoods. Such approximate relations have been shown to be useful in
many application areas requiring the use of approximate knowledge structures [3].

There are many choices as to possible constraints to be placed on the similarity
relation used to define approximations. For example, one might not want the relation
be transitive since similar objects do not naturally chain in a transitive manner (see,
e.g., [1, 6, 3, 10]).

The basic requirement as to approximations is that the lower approximation is
included in the upper one of any set/relation. This is equivalent to the seriality of
similarity relations (see [5]), which we set as the only requirement.

The focus of this paper is approximate knowledge fusion based on the idea of
approximations. Our starting point is [2], where a framework for knowledge fusion
in multi-agent systems is introduced. Agent’s individual perceptual capabilities are
represented by similarity relations, further aggregated to express joint capabilities of
teams. The aggregation expressing a shift from individual to social level of agents’
activity has been formalized by means of dynamic logic. The approach of [2], as
using the full propositional dynamic logic, does not guarantee tractability of rea-
soning [9]. Our idea is to adapt the techniques of [11, 12, 13] to provide an engine
for tractable approximate database querying restricted to a Horn fragment of serial
PDL, denoted by SPDL.

To distinguish between extensional and intensional database, we use the termi-
nology of description logics:

• ABox (assertion box) stands for the extensional database (containing facts)
• TBox (terminological box) stands for the intensional database (containing rules).

In this paper we present an algorithm that, given a Horn query P expressed in
SPDL, and an ABox A , constructs a least SPDL model M of P and A . This
model has the property that for every positive formula ϕ and for every individual a,
ϕ(a) is a logical consequence of P,A in SPDL (denoted by P,A |=s ϕ(a)) iff it
is true in M (i.e. aM ∈ ϕM). The least model M is constructed in polynomial time
in the size of A (and has a polynomial size in the size of A). As a consequence, the
problem of checking whether P,A |=s ϕ(a) has PTIME data complexity (measured
in the size of A).

The paper is structured as follows. In Section 2 we recall Propositional Dynamic
Logic, show its relationship to approximate reasoning and approximate databases,
and justify the requirement as to seriality. Section 3 is devoted to showing the PTIME
data complexity of the selected Horn fragment of SPDL. Section 4 shows an exam-
ple illustrating the potential of the introduced machinery in real-world applications.

2 Serial Propositional Dynamic Logic 3

2 Serial Propositional Dynamic Logic

2.1 Language and Semantics of SPDL

Let us now define serial propositional dynamic logic (SPDL). The key idea is to pro-
vide calculus on similarity relations rather than on programs. This somehow unusual
move allows us to reason about similarities using the whole apparatus of dynamic
logic, where “programs” are replaced by similarity relations.

Let MOD denote the set of similarity relation symbols, and PROP denote
the set of propositions. We use letters like σ to indicate elements of MOD , and
letters like p, q to indicate elements of PROP .

Definition 1. Formulas and similarity expressions are respectively defined by the
two following BNF grammar rules:

ϕ ::= > | p | ¬ϕ | ϕ ∧ϕ | ϕ ∨ϕ | ϕ → ϕ | 〈α〉ϕ | [α]ϕ
α ::= σ | α;α | α ∪α | α∗ | ϕ?

C

We use letters like α , β to denote similarity expressions; ϕ , ψ to denote formulas;
and a, b, c to denote individuals. Intuitively,

• α1;α2 stands for a sequential composition of relations α1 and α2
• α1∪α2 stands for set-theoretical union of relations α1 and α2
• α∗ stands for the transitive closure of α

• ϕ? stands for the test operator.

〈α〉 and [α] are modal operators of the dynamic logic with the meaning:

• 〈α〉ϕ: there is an object similar w.r.t. α to a given object and satisfying formula ϕ

• [α]ϕ: all objects similar w.r.t. α to a given object satisfy ϕ .

The following definitions naturally capture these intuitions. Observe, however,
that rather than the set of worlds, the sets of objects are domains of Kripke structures.

Definition 2. A Kripke structure is a pair M = 〈∆M , ·M 〉, where ∆M is a set of ob-
jects, and ·M is an interpretation function that maps each individual a to an element
aM of ∆M , each proposition p to a subset pM of ∆M , and each similarity relation
symbol σ to a binary relation σM on ∆M . C

The interpretation function is extended for all formulas and similarity expressions:

>M = ∆M , (¬ϕ)M = ∆M \ϕM , (ϕ ∧ψ)M = ϕM ∩ψM

(ϕ ∨ψ)M = ϕM ∪ψM , (ϕ → ψ)M = (¬ϕ ∨ψ)M

(〈α〉ϕ)M = {x ∈ ∆M | ∃y [αM (x,y)∧ϕM (y)]}
([α]ϕ)M = {x ∈ ∆M | ∀y [αM (x,y)→ ϕM (y)]}

(α;β)M = αM ◦βM = {(x,y) | ∃z [αM (x,z)∧βM (z,y)]}
(α ∪β)M = αM ∪βM , (α∗)M = (αM)∗, (ϕ?)M = {(x,x) | ϕM (x)}.

4 B. Dunin-Kȩplicz, L.A. Nguyen and A. Szałas

We sometimes write M ,x |= ϕ to denote x ∈ ϕM . For a set Γ of formulas, we
write M ,x |= Γ to denote that M ,x |= ϕ for all ϕ ∈Γ . If M ,x |= Γ for all x ∈ ∆M

then we call M a model of Γ .
When dealing with the data complexity of the instance checking problem, with-

out loss of generality we can assume that both the sets MOD and PROP are
finite and fixed. Under this assumption, the size of a Kripke structure M is defined
to be the number of elements of the set ∆M .

For every σ ∈MOD , we adopt the seriality axioms [σ]ϕ → 〈σ〉ϕ . It is well
known (see, e.g., [5]) that seriality axioms correspond to the seriality property
∀x∃y [σM (x,y)]. By an admissible interpretation for SPDL we understand any
Kripke structure M with all σ ∈MOD satisfying the seriality property. We call
such Kripke structures serial.

2.2 SPDL as a Query Language in Approximate Databases

Let us now explain how SPDL is used as a query language. First observe that in-
terpretations assign sets of objects to formulas. Thus it is natural to consider each
formula as the query selecting all objects satisfying the formula.

Example 1. Let, in a given interpretation M , ∆M = {o1,o2,o3,o4,o5}, redM =
{o1,o3,o4} and smallM = {o1,o2,o4,o5}. Then the (red ∧ small)M = {o1,o4},
thus the query (red ∧ small) returns the set {o1,o4}. Similarly, the query (red →
small) returns {o1,o2,o4,o5}. C

Let us now recall the notion of approximations.

Definition 3. Let ∆ be a set of objects and α be a similarity expression representing
a serial binary relation on ∆ . For a ∈ ∆ , by the neighborhood of a w.r.t. α , we
understand the set of elements similar to a, nα(a) def= {b ∈ ∆ | α(a,b)}. For A⊆ ∆ ,
the lower and upper approximations of A w.r.t. α , denoted respectively by A+

α and
A⊕α , are defined by A+

α = {a ∈ ∆ | nα(a)⊆A},A⊕α = {a ∈ ∆ | nα(a)∩A 6= /0}. C

����
A

A⊕α

A+
α

Fig. 1 Lower approximation A+
α and upper approximation A⊕α of a set A.

The meaning of those approximations is illustrated in Figure 1. Intuitively, as-
suming that the perception of an agent is modeled by similarity expression α ,

2 Serial Propositional Dynamic Logic 5

• a ∈ A+

α means that, from the point of view of the agent, a surely is in A, since all
objects indiscernible from a are in A

• a ∈ A⊕α means that, from the point of view of the agent, a possibly is in A, since
there are objects indiscernible from a which are in A.

Now observe that:

[α]A expresses the lower approximation of A w.r.t. α , i.e., A+

α , (1)
〈α〉A expresses the upper approximation of A w.r.t. α , i.e., A⊕α . (2)

Remark 1. In the view of (1) and (2), the seriality axiom expresses the property
that the lower approximation of a set w.r.t. any similarity expression is included
in its upper approximation. This justifies seriality as the basic requirement on
approximations. C

Example 2. Let M be the interpretation considered in Example 1. Let σ be the
reflexive closure of relation {〈o1,o2〉,〈o2,o1〉,〈o3,o4〉}. Then, for example,

red+

σ = {o3,o4}, red⊕σ = {o1,o2,o3,o4}. C

2.3 The Horn Fragment of SPDL

In order to express tractable queries we restrict the query language to the Horn
fragment.

Definition 4. Positive formulas ϕpos are defined by the following BNF grammar:

ϕpos ::= > | p | ϕpos∧ϕpos | ϕpos∨ϕpos | 〈αpos3〉ϕpos | [αpos2]ϕpos

αpos3 ::= σ | αpos3 ;αpos3 | αpos3 ∪αpos3 | α∗pos3 | ϕpos?
αpos2 ::= σ | αpos2 ;αpos2 | αpos2 ∪αpos2 | α∗pos2 | (¬ϕpos)?

Program clauses ϕprog are defined by the following BNF grammar:2

ϕprog ::= > | p | ϕpos→ ϕprog | ϕprog∧ϕprog | 〈αprog3〉ϕprog | [αprog2]ϕprog
αprog3 ::= σ | αprog3 ;αprog3 | ϕprog?
αprog2 ::= σ | αprog2 ;αprog2 | αprog2 ∪αprog2 | α∗prog2

| ϕpos?

A positive logic program is a finite set of program clauses. C

Example 3. Observe that the Horn fragment of SPDL is quite expressive. For ex-
ample, it allows one to express a variant of default rules (discussed, e.g., in [3]).
Namely, a typical default rule can be expressed as A+

σ ,B⊕σ `C+

σ , with intuitive mean-
ing “if A is surely true and B might be true then accept C as surely true”. C

Let us now formally link SPDL with databases.

2 Notice the two occurrences of ϕpos in the grammar. We do not allow formulas of the form 〈α ∪
β 〉ϕ or 〈α∗〉ϕ to be program clauses because they cause non-determinism.

6 B. Dunin-Kȩplicz, L.A. Nguyen and A. Szałas

Definition 5. An individual assertion is an expression of the form p(a), where p is
a proposition and a is an individual. A similarity assertion is an expression of the
form σ(a,b), where σ is a similarity relation symbol and a, b are individuals. An
ABox is a finite set of individual assertions and similarity assertions. C

Comparing to description logics, individual assertions play a role of concept as-
sertions, while similarity assertions play a role of assertions.

Definition 6.

• Given a Kripke structure M and an ABox A , we say that M is a model of A ,
denoted by M |= A , if aM ∈ pM for every individual assertion p(a) ∈ A and
(aM ,bM) ∈ σM for every similarity assertion σ(a,b) ∈A .

• Given a positive logic program P , an ABox A , a positive formula ϕ and an
individual a, we say that a has the property ϕ w.r.t. P and A in SPDL (or ϕ(a)
is a logical consequence of P,A in SPDL), denoted by P,A |=s ϕ(a), if for
every serial Kripke structure M , if M is a model of P and A then aM ∈ ϕM .

• By the instance checking problem of the Horn fragment of SPDL we mean the
problem of checking P,A |=s ϕ(a). The data complexity of this problem is
measured when P , ϕ and a are fixed (and compose a query), while A varies as
input data. C

3 Computational Aspects

A Kripke structure M is less than or equal to M ′, M ≤M ′, if for every positive
formula ϕ and every individual a, aM ∈ ϕM implies aM ′ ∈ ϕM ′

.
Let P be a positive logic program and A be an ABox. We say that a Kripke

structure M is a least SPDL model of P and A if M is an SPDL model of P and
A and is less than or equal to any other SPDL model of P and A .

Let us now present an algorithm that, given a positive logic program P and
an ABox A , constructs a finite least SPDL model of P and A . The algorithm
constructs the following data structures:

• ∆ is a set of objects. We distinguish the subset ∆0 of ∆ that consists of all the
individuals occurring in the ABox A . In the case A is empty, let ∆0 = {τ} for
some element τ .

• H is a mapping that maps every x ∈ ∆ to a set of formulas, which are the prop-
erties that should hold for x. When the elements of ∆ are treated as states, H(x)
denotes the content of the state x.

• Next is a mapping such that, for x ∈ ∆ and 〈σ〉ϕ ∈H(x), we have Next(x,〈σ〉ϕ)
∈ ∆ . The meaning of Next(x,〈σ〉ϕ) = y is that:

– 〈σ〉ϕ ∈ H(x) and ϕ ∈ H(y),
– the “requirement” 〈σ〉ϕ is realized for x by going to y via a σ -transition.

Using the above data structures, we define a Kripke structure M such that:

4 An Exemplary Scenario 7

• ∆M = ∆ ,
• aM = a for every individual a occurring in A ,
• pM = {x ∈ ∆ | p ∈ H(x)} for every p ∈PROP ,
• σM = {(a,b) | σ(a,b)∈A }∪{(x,y) |Next(x,〈σ〉ϕ) = y for some ϕ} for every

σ ∈MOD .

The saturation of a set Γ of formulas, denoted by Sat(Γ), is defined to be the
smallest superset of Γ such that:

• > ∈ Sat(Γ) and 〈σ〉> ∈ Sat(Γ) for all σ ∈MOD ,
• if ϕ ∧ψ ∈ Sat(Γ) or 〈ϕ?〉ψ ∈ Sat(Γ) then ϕ ∈ Sat(Γ) and ψ ∈ Sat(Γ),
• if 〈α;β 〉ϕ ∈ Sat(Γ) then 〈α〉〈β 〉ϕ ∈ Sat(Γ),
• if [α;β]ϕ ∈ Sat(Γ) then [α][β]ϕ ∈ Sat(Γ),
• if [α ∪β]ϕ ∈ Sat(Γ) then [α]ϕ ∈ Sat(Γ) and [β]ϕ ∈ Sat(Γ),
• if [α∗]ϕ ∈ Sat(Γ) then ϕ ∈ Sat(Γ) and [α][α∗]ϕ ∈ Sat(Γ),
• if [ϕ?]ψ ∈ Sat(Γ) then (ϕ → ψ) ∈ Sat(Γ).

The transfer of Γ through σ is defined by Trans(Γ ,σ) def= Sat({ϕ | [σ]ϕ ∈ Γ }).
We use procedure Find(Γ) defined as:

if there exists x ∈ ∆ \∆0 with H(x) = Γ then return x,
else add a new object x to ∆ with H(x) = Γ and return x.

The algorithm shown in Figure 2 constructs a least SPDL model for a positive logic
program P and an ABox A .

Theorem 1.
1. Let P be a positive logic program and A be an ABox. The Kripke structure M

constructed by the algorithm shown in Figure 2 for P and A is a least SPDL
model of P and A .

2. Let P be a positive logic program, A an ABox, ϕ a positive formula, and a an
individual. Then checking (P,A) |=s ϕ(a) can be done in polynomial time in
the size of A (by constructing a least SPDL model M of P and A using our
algorithm, and then checking whether aM ∈ ϕM). That is, the data complexity
of the Horn fragment of SPDL is in PTIME. C

4 An Exemplary Scenario

Consider the following scenario:

Two robots, R1 and R2, have the goal to move objects from one place to an-
other. Each robot is able to move objects of a specific signature,3 and together
they might be able to move objects of a combined signature. Some objects,
when attempted to be moved, may cause some damages for robots. Robots
are working independently, but sometimes have to cooperate to achieve their
goals.

To design such robots one has to make a number of decisions as described below.

3 For example, dependent on weight, size and type of surface.

8 B. Dunin-Kȩplicz, L.A. Nguyen and A. Szałas

Input: A positive logic program P and an ABox A .
Output: A least SPDL model M of P and A .

1. let ∆0 be the set of all individuals occurring in A ;
if ∆0 = /0 then ∆0 := {τ};
set ∆ := ∆0, P ′ := Sat(P);
for x ∈ ∆ , set H(x) := P ′∪{p | p(x) ∈A };

2. for every x ∈ ∆ reachable from ∆0 and for every formula ϕ ∈ H(x)

a. case ϕ = 〈σ〉ψ : if Next(x,〈σ〉ψ) is not defined then
Next(x,〈σ〉ψ) := Find(Sat({ψ})∪Trans(H(x),σ)∪P ′);

b. case ϕ = [σ]ψ :
i. for every y ∈ ∆0 such that σM (x,y) holds and ψ /∈ H(y)

H(y) := H(y)∪Sat({ψ});
ii. for every y ∈ ∆ \∆0 such that σM (x,y) holds and ψ /∈ H(y)

A. y∗ := Find(H(y)∪Sat({ψ}));
B. for every ξ such that Next(x,〈σ〉ξ) = y

Next(x,〈σ〉ξ) := y∗;
c. case ϕ = (ψ → ξ) : if x ∈ ψM and Next(y,〈σ〉>) is defined for every y reachable

from x and every σ ∈MOD then
i. if x ∈ ∆0 then H(x) := H(x)∪Sat({ξ})

ii. else
A. x∗ := Find(H(x)∪Sat({ξ}));
B. for every y, σ , ζ such that Next(y,〈σ〉ζ) = x

Next(y,〈σ〉ζ) := x∗;

3. if some change occurred, go to Step 2;
4. delete from ∆ every x unreachable from ∆0 and delete from H and Next all elements

related with such an x.

Fig. 2 Algorithm constructing the least SPDL model for a positive logic program and an ABox.

4.1 Formalizing Movability of Objects

We assume that the signature of movable objects for each robot is given by its spec-
ification together with a similarity relation defining the range of these objects as
follows:

spec1
def≡ (light ∧ smooth)∨ (heavy∧ rough)− for robot R1 (3)

spec2
def≡ small∨medium− for robot R2. (4)

Movable objects are then specified by

speci→ movablei, (5)

where i ∈ {1,2} and movablei is true for objects that can be moved by Ri.
The idea is that all objects similar to movable ones are movable too.4 Let σ1 and

σ2 be similarity relations reflecting perceptual capabilities of R1 and R2, respectively

4 This is a very natural and quite powerful technique, allowing one to express the inheritance of
particular properties of objects by similar objects.

4 An Exemplary Scenario 9

(for a discussion of such similarity relations based on various sensor models see [4]).
Now, in addition to (5), movable objects are characterized by

〈σi〉speci→ movablei. (6)

Remark 2. Note that rather than (6) one could assume [σi]speci → movablei. This
would mean that, in addition to (5), we would consider objects which are similar
only to movable objects. In some applications this choice would indeed be reason-
able and perhaps less risky. C

Observe that in general it is impossible to automatically derive combined signa-
tures that specify what robots can move together. Therefore, we introduce spec3 and
α3 as a specification of such joint capabilities. An example of spec3 can be given by

spec3
def≡ large∧ rough. (7)

Objects movable by robots working together are then defined by

(spec3∨〈α3〉spec3)→ movable by two. (8)

Observe that α3 is usually computed on the basis of σ1 and σ2, since we do not as-
sume any observer other than R1,R2, and σ1,σ2 reflects their perceptual capabilities.
We shall assume that

α3
def= σ1∪σ2∪ (σ1;σ2)∪ (σ2;σ1). (9)

The meaning of this expression is that an object o is similar w.r.t. α3 to o′ whenever

• o is perceived similar to o′ by R1 or by R2, or
• there is an object o′′ such that

– o is perceived similar to o′′ by R1 and o′′ is perceived similar to o′ by R2, or
– o is perceived similar to o′′ by R2 and o′′ is perceived similar to o′ by R1.

Let us emphasize that one can use much more complex expressions, reflecting par-
ticular algorithms for computing α3, since our operators are those accepted in PDL.
Of course, there are some restrictions, if one wants to stay in a tractable framework.
Recall that we have accepted Definition 4 to guarantee tractability.

4.2 The Database

Let A be the ABox consisting of the assertions about objects o1, . . . , o5 that are
illustrated in Figure 3. It contains, for example, light(o1), smooth(o1), σ1(o1,o2),
σ1(o2,o1), etc. Let P be the positive logic program consisting of the clauses (5)
and (6) for i ∈ {1,2}, and (8). We consider here the database consisting of P and
A in SPDL (which adopts the axioms 〈σ1〉> and 〈σ2〉> for all the objects of the
domain).

In Figure 4 we present the least SPDL model M of P and A constructed by the
algorithm. The object o6 is the only additional object, not satisfying any proposition.

10 B. Dunin-Kȩplicz, L.A. Nguyen and A. Szałas

(o1)
light

smooth
oo σ1 //

OO

σ2

��

(o2) oo σ2 //
(o3)

rough
mediumOO

σ1

��
(o4)

small

(o5)
rough
large

Fig. 3 An ABox for the example considered in Section 4.2.

(o1)
light

smooth
movable1
movable2

oo σ1 //

OO

σ2

��
σ1 ,σ2

��@
@@

@@
@@

@@
@@

@@

(o2)
movable1
movable2

movable by two

oo σ2 //

σ1 ,σ2

��

(o3)
rough

medium
movable2

movable by twoOO

σ1

��σ1 ,σ2

}}{{
{{

{{
{{

{{
{{

(o4)
small

movable2
σ1 ,σ2

// (o6)

σ1 ,σ2

FF

(o5)
rough
large

movable by two
σ1 ,σ2

oo

Fig. 4 The least SPDL model of the database considered in Section 4.2.

4.3 Some Queries

Recall that, having a least SPDL model M of P and A , to check whether an in-
dividual a has a positive property ϕ w.r.t. P and A in SPDL, it suffices to check
whether a∈ ϕM . We have that movableM

1 = {o1,o2}, movableM
2 = {o1,o2,o3,o4},

movable by twoM = {o2,o3,o5}, (movable by two ∧ 〈σ1〉movable1)M = {o1},
(movable by two∧ [σ1]movable1)M = /0.

5 Conclusions

In this paper we have presented a powerful formalism for approximate knowledge
fusion, based on adaptation of Propositional Dynamic Logic. We have shown that
restricting this logic to its suitably chosen Horn fragment results in tractable query-
ing mechanism which can be applied in application, where approximate knowledge
from various sources is to be fused, e.g., in robotics and multi-agent systems.

References 11

Importantly, serial PDL, denoted by SPDL, is also useful as a description logic
for domains where seriality condition appears naturally.5 For example, in reasoning
about properties of web pages one can assume that every considered web page has
a link to another page (or to itself).

We plan to extend the framework to deal with other operations on similarity re-
lations, which would allow expressing even more subtle approximations and fused
knowledge structures applicable in different stages of teamwork in multi-agent sys-
tems as discussed in [7, 8].

References

1. S.P. Demri and E.S. Orłowska. Incomplete Information: Structure, Inference, Complexity.
Monographs in Theoretical Computer Science. An EATCS Series. Springer-Verlag, Heidel-
berg, 2002.

2. P. Doherty, B. Dunin-Kȩplicz, and A. Szałas. Dynamics of approximate information fu-
sion. In M. Kryszkiewicz, J. Peters, H. Rybinski, and A. Skowron, editors, Proceedings of
RSEISP’2007, LNAI 4585, pages 668–677. Springer-Verlag, 2007.

3. P. Doherty, W. Łukaszewicz, A. Skowron, and A. Szałas. Knowledge Representation Tech-
niques. A Rough Set Approach, volume 202 of Studies in Fuziness and Soft Computing.
Springer-Verlag, 2006.

4. P. Doherty, W. Łukaszewicz, and A. Szałas. Communication between agents with heteroge-
neous perceptual capabilities. Journal of Information Fusion, 8(1):56–69, 2007.

5. P. Doherty and A. Szałas. On the correspondence between approximations and similarity. In
S. Tsumoto, R. Slowinski, J. Komorowski, and J.W. Grzymala-Busse, editors, Proceedings of
RSCTC’2004, LNAI 3066, pages 143–152. Springer-Verlag, 2004.

6. B. Dunin-Kȩplicz and A. Szałas. Towards approximate BGI systems. In H-D. Burkhard,
G. Lindeman, L. Varga, and R. Verbrugge, editors, Proceedings of CEEMAS’2007, LNAI 4696,
pages 277–287. Springer-Verlag, 2007.

7. B. Dunin-Kȩplicz and R. Verbrugge. Collective intentions. Fundamenta Informaticae,
51(3):271–295, 2002.

8. B. Dunin-Kȩplicz and R. Verbrugge. A tuning machine for cooperative problem solving.
Fundamenta Informaticae, 63:283–307, 2004.

9. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
10. J. Maluszyński, A. Szałas, and A. Vitória. Paraconsistent logic programs with four-valued

rough sets. In C.-C. Chan, J. Grzymala-Busse, and W. Ziarko, editors, Proceedings of
RSCTC’2008, LNAI 5306, pages 41–51, 2008.

11. L.A. Nguyen. On the deterministic Horn fragment of test-free PDL. In I. Hodkinson and
Y. Venema, editors, Advances in Modal Logic - Volume 6, pages 373–392. King’s College
Publications, 2006.

12. L.A. Nguyen. Weakening Horn knowledge bases in regular description logics to have PTIME
data complexity. In S. Ghilardi, U. Sattler, V. Sofronie-Stokkermans, and A. Tiwari, editors,
Proceedings of ADDCT’2007, pages 32–47, 2007.

13. L.A. Nguyen. Constructing finite least Kripke models for positive logic programs in serial
regular grammar logics. Logic Journal of the IGPL, 16(2):175–193, 2008.

14. Z. Pawlak. Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic
Publishers, Dordrecht, 1991.

5 Related work on Horn fragments of description logics can be found in [12]. The papers by other
authors do not consider PDL but only versions of the description logic S H I .

