Abstract
We introduce a new numerical abstract domain, so-called interval polyhedra (itvPol), to infer and propagate interval linear constraints over program variables. itvPol, which allows to represent constraints of the form ∑ k [a k ,b k ]x k ≤ c, is more expressive than the classic convex polyhedra domain and allows to express certain non-convex (even unconnected) properties. The implementation of itvPol can be constructed based on interval linear programming and an interval variant of Fourier-Motzkin elimination. The preliminary experimental results of our prototype are encouraging, especially for programs affected by interval uncertainty, e.g., due to uncertain input data or interval-based abstractions of disjunctive, non-linear, or floating-point expressions. To our knowledge, this is the first application of interval linear algebra to static analysis.
This work is supported by the INRIA project “Abstraction” common to CNRS and ENS in France, and by the National Natural Science Foundation of China under Grant No.60725206.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
APRON numerical abstract domain library, http://apron.cri.ensmp.fr/library/
Allamigeon, X., Gaubert, S., Goubault, E.: Inferring min and max invariants using max-plus polyhedra. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 189–204. Springer, Heidelberg (2008)
Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 135–148. Springer, Heidelberg (2004)
Chen, L., Miné, A., Cousot, P.: A sound floating-point polyhedra abstract domain. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 3–18. Springer, Heidelberg (2008)
Chineck, J.W., Ramadan, K.: Linear programming with interval coefficients. Journal of the Operational Research Society 51(2), 209–220 (2000)
Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Proc. of the 2nd International Symposium on Programming, Dunod, Paris, pp. 106–130 (1976)
Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: ACM POPL 1977, pp. 238–252. ACM Press, New York (1977)
Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: ACM POPL 1979, pp. 269–282. ACM Press, New York (1979)
Cousot, P., Cousot, R.: Higher-order abstract interpretation (and application to comportment analysis generalizing strictness, termination, projection and PER analysis of functional languages). In: ICCL 1994, pp. 95–112. IEEE Computer Society Press, Los Alamitos (1994)
Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: ACM POPL 1978, pp. 84–96. ACM Press, New York (1978)
Giacobazzi, R., Ranzato, F.: Optimal domains for disjunctive abstract interpretation. Sci. Comput. Program 32(1-3), 177–210 (1998)
Granger, P.: Static analysis of arithmetical congruences. International Journal of Computer Mathematics 30, 165–199 (1989)
Gulavani, B.S., Gulwani, S.: A numerical abstract domain based on expression abstraction and max operator with application in timing analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 370–384. Springer, Heidelberg (2008)
Jansson, C.: Calculation of exact bounds for the solution set of linear interval systems. Linear Algebra and Its Applications 251, 321–340 (1997)
Jansson, C.: Rigorous lower and upper bounds in linear programming. SIAM Journal on Optimization 14(3), 914–935 (2004)
Lalire, G., Argoud, M., Jeannet, B.: Interproc, http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/
Laviron, V., Logozzo, F.: Subpolyhedra: A (more) scalable approach to infer linear inequalities. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 229–244. Springer, Heidelberg (2009)
Makhorin, A.: The GNU Linear Programming Kit (2000), http://www.gnu.org/software/glpk/
Miné, A.: Relational abstract domains for the detection of floating-point run-time errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer, Heidelberg (2004)
Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation 19(1), 31–100 (2006)
Miné, A.: Symbolic methods to enhance the precision of numerical abstract domains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 348–363. Springer, Heidelberg (2005)
Oettli, W., Prager, W.: Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numer. Math. 6, 405–409 (1964)
Rohn, J.: A handbook of results on interval linear problems. Technical report, Czech Academy of Sciences, Prague, Czech Republic (April 2005)
Rohn, J.: Solvability of systems of interval linear equations and inequalities. In: Linear Optimization Problems with Inexact Data, pp. 35–77. Springer, US (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, L., Miné, A., Wang, J., Cousot, P. (2009). Interval Polyhedra: An Abstract Domain to Infer Interval Linear Relationships. In: Palsberg, J., Su, Z. (eds) Static Analysis. SAS 2009. Lecture Notes in Computer Science, vol 5673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03237-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-03237-0_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03236-3
Online ISBN: 978-3-642-03237-0
eBook Packages: Computer ScienceComputer Science (R0)