Skip to main content

Mathematical Model of HIV Superinfection and Comparative Drug Therapy

  • Conference paper
Artificial Immune Systems (ICARIS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5666))

Included in the following conference series:

  • 570 Accesses

Abstract

We have modeled the within-patient evolutionary process during HIV infection. During the HIV infection several quasispecies of the virus arise. These quasispecies are able to use different coreceptors, in particular the CCR5 and CXCR4 (R5 and X4 phenotypes, respectively). The switch in coreceptor usage has been correlated with a faster progression of the disease to the AIDS phase. As several pharmaceutical companies are getting ready to start large phase III trials for their R5 blocking drugs, models are needed to predict the co-evolutionary and competitive dynamics of virus strains. Moreover, we have considered CTLs response and effect of TNF. We present a model of HIV early infection and CTLs response which describes the dynamics of R5 quasispecie and a model of HIV late infection, specifying the R5 to X4 switch and effect of immune response. We report the following findings: quasispecies dynamics after superinfection or coinfection have time scales of several months and become even slower in presence of the CTLs response. In addition, we illustrate dynamics of HIV quasispecies on HAART, Maraviroc and Zinc-finger nucleases(ZFN) therapies. Our model represents a general framework to study the mutation and distribution of HIV quasispecies during disease progression, and can be used to design vaccines and drug therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nagashima, K.A., Thompson, D.A., Rosenfield, S.I., et al.: Human Immunodeficiency virus type 1 entry inhibitors PRO 542 and T-20 are potently synergistic in blocking virus-cell and cell-cell fusion. J. Infect. Dis. 183, 1121–1125 (2001)

    Article  Google Scholar 

  2. Karlsson, I., Antonsson, L., Shi, Y., Oberg, M., Karlsson, A., Albert, J., Olde, B., Owman, c., Jansson, B., Fenyo, E.M.: Coevolution of RANTES sensitivity and mode of CCR5 receptor use by human immunodeficiency virus type 1 of the R5 phenotype. J. Virol. 78, 11807–11815 (2004)

    Article  Google Scholar 

  3. Gorry, P.R., Churchill, M., Crowe, S.M., Cunningham, A.L., Gabuzda, D.: Pathogenesis of macrophage tropic HIV. Curr. HIV Res. 3, 53–60 (2005)

    Article  Google Scholar 

  4. Koot, M., Keet, I.P., Vos, A.H., de Goede, R.E., Roos, M.T., Coutinho, R.A., Miedema, F., Schellekens, P.T., Tersmette, M.: Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann. Intern. Med. 118, 681–688 (1993)

    Article  Google Scholar 

  5. Davenport, M., Zaunders, J., Hazenberg, M., Schuitemaker, H., Rij, R.: Cell turnover and cell tropism in HIV-1 infection. Trends Microbiol. 10, 275–278 (2002)

    Article  Google Scholar 

  6. Gray, L., Sterjovski, J., Churchill, M., Ellery, P., Nasr, N., Lewin, S.R., Crowe, S.M., Wesselingh, S.L., Cunningham, A.L., Gorry, P.R.: Uncoupling coreceptor usage of human immunodeficiency virus type 1 (HIV-1) from macrophage tropism reveals biological properties of CCR5-restricted HIV-1 isolates from patients with acquired immunodeficiency syndrome. Virology 337, 384–398 (2005)

    Article  Google Scholar 

  7. Herbeuval, J.P., Hardy, A.W., Boasso, A., Anderson, S.A., Dolan, M.J., Dy, M., Shearer, G.M.: Regulation of TNF-related apoptosis-inducing ligand on primary CD4+ T cells by HIV-1: Role of type I IFN-producing plasmacytoid dendritic cells. Proc. Nat. Acad. Sci. USA 102, 13974–13979 (2005)

    Article  Google Scholar 

  8. Pavlakis, G.N., Valentin, A., Morrow, M., Yarchoan, R.: Differential effects of TNF on HIV-1 expression: R5 inhibition and implications for viral evolution. In: Int. Conf. AIDS 2004, July 11-16, 15:(abstract no. MoOrA1048) (2004)

    Google Scholar 

  9. Eigen, M., McCaskill, J., Schuster, P.: The Molecular Quasi-Species. Adv. Chem. Phys. 75, 149–263 (1989)

    Google Scholar 

  10. Sguanci, L., Bagnoli, F., Li, P.: Modeling viral coevolution: HIV multi-clonal persistence and competition dynamics. Physica A 366, 333–346 (2006)

    Article  Google Scholar 

  11. Biebricher, C.K., Eigen, M.: The error threshold. Virus Res. 107, 117–127 (2005)

    Article  Google Scholar 

  12. Neumann, A.U., Lam, N.P., Dahari, H., Gretch, D.R., Wiley, T.E., Layden, T.J., Perelson, A.S.: Hepatitis C Viral Dynamics in Vivo and the Antiviral Efficacy of Interferon-alpha Therapy. Science 282, 103–107 (1998)

    Article  Google Scholar 

  13. Eigen, M., Schuster, P.: The hypercycle. Naturwissenschaften 64, 541–565 (1977)

    Article  Google Scholar 

  14. Carrington, M., OBrien, S.J.: The influence of HLA genotype on AIDS. Annu. Rev. Med. 54, 535–551 (2003)

    Article  Google Scholar 

  15. Kalams, S.A., Goulder, P.J., Shea, A.K., Jones, N.G., Trocha, A.K., et al.: Levels of human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte effector and memory responses decline after suppression of viremia with highly active antiretroviral therapy. J. Virol. 73, 6721–6728 (1999)

    Google Scholar 

  16. Borrow, P., Lewicki, H., Wei, X., Horwitz, M.S., Peffer, N., et al.: Antiviral pressure exerted by HIV-1specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat. Med. 3, 205–211 (1997)

    Article  Google Scholar 

  17. Phillips, R.E., Rowland-Jones, S., Nixon, D.F., Gotch, F.M., Edwards, J.P., et al.: Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354, 453–459 (1991)

    Article  Google Scholar 

  18. Jin, X., Bauer, D.E., Tuttleton, S.E., Lewin, S., Gettie, A., et al.: Dramatic rise in plasma viremia after CD8() T cell depletion in simian immunodeficiency virusinfected macaques. J. Exp. Med. 189, 991–998 (1999)

    Article  Google Scholar 

  19. Althaus, C.L., Be Boer, R.J.: Dynamics of Immune escape during HIV/SIV Infection. PLOS Computational Biology 4(7), e1000103 (2008)

    Article  MathSciNet  Google Scholar 

  20. Ho, D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M., Markowitz, M.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995)

    Article  Google Scholar 

  21. Chao, L., Davenport, M.P., Forrest, S., Perelson, A.S.: A stochastic model of cytotoxic T cell responses. J. Theor. Biol. 228, 227–240 (2004)

    Article  MathSciNet  Google Scholar 

  22. Celada, F., Seiden, P.E.: Affinity maturation and hypermutation in a simulation of the humoral immune response. Eur. J. Immunol. 26, 1350–1358 (1996)

    Article  Google Scholar 

  23. De Boer, R.J., Perelson, A.S.: Towards a general function describing T-cell proliferation. J. Theor. Biol. 175, 567–576 (1995)

    Article  Google Scholar 

  24. Wodarz, D., Nowak, M.A.: HIV dynamics and evolution. BioEssays 24, 1178–1187 (2002)

    Article  Google Scholar 

  25. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M.D., Ho, D.: HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time. Science 271, 1582–1586 (1996)

    Article  Google Scholar 

  26. Wiegel, F.W., Perelson, A.S.: Some scaling principles for the immune system. Immunol. Cell. Biol. 82, 127–131 (2004)

    Article  Google Scholar 

  27. Wei, X., Ghosh, S.K., Taylor, M.E., Johnson, V.A., Emini, E.A., Deutsch, P., Lifson, J.D., Bonhoeffer, S., Nowak, M.A., Hahn, B.H., Saag, M.S., Shaw, G.M.: Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995)

    Article  Google Scholar 

  28. Sguanci, L., Bagnoli, F., Li, P.: Modeling HIV quasispecies evolutionary dynamics. BMC Evolutionary Biology 7, S5 (2007)

    Article  Google Scholar 

  29. Bruch, C.L., Chao, L.: Evolvability of an RNA virus determined by its mutational neighborhood. Nature 406, 625–628 (2000)

    Article  Google Scholar 

  30. Riddell, S.R., Watanabe, K.S., Goodrich, J.M., Li, C.R., Agha, M.E., Greenberg, P.D.: Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science (Wash. DC) 257, 238–241 (1992)

    Article  Google Scholar 

  31. Cannon, M.J., Openshaw, P.J., Askonas, B.A.: Cytotoxic T cells clear virus but augment lung pathology in mice infected with respiratory syncytial virus. J. Exp. Med. 168, 1163–1168 (1988)

    Article  Google Scholar 

  32. Kaslow, R., Carrington, M., Apple, R., Park, L., Munoz, A., et al.: Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat. Med. 2, 405–411 (1996)

    Article  Google Scholar 

  33. Schmitz, J., Kuroda, M., Santra, S., Sasseville, V., Simon, M., et al.: Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283, 857–860 (1999)

    Article  Google Scholar 

  34. Asquith, B., Edwards, C.T.T., Lipsitch, M., McLean, A.R.: Inefficient Cytotoxic T LymphocyteMediated Killing of HIV-1 Infected Cells In Vivo. PLOS Biology 4(4), 90 (2006)

    Article  Google Scholar 

  35. Gulick, R.M., Lalezari, J., James, G.J., et al.: Maraviroc for Previously Treated Patients with R5 HIV-1 Infection. The New England Journal of Medicine 359, 14 (2008)

    Article  Google Scholar 

  36. Lieberman-Blum, S.S., Fung, H.B., Bandres, J.C.: Maraviroc: A CCR5-Receptor Antagonist for the Treatment of HIV-1 Infection. Clinical Therapeutics 30, 7 (2008)

    Article  Google Scholar 

  37. Dybul, M., Fauci, A.S., Bartlett, J.G., Kaplan, J.E., Pau, A.K.: Panel on Clinical Practices for Treatment of HIV (September 2002). “Guidelines for using antiretroviral agents among HIV-infected adults and adolescents”. Ann. Intern. Med. 137(5 Pt 2), 381–433 (2002)

    Article  Google Scholar 

  38. Rossi, J.J., June, C.H., Kohn, D.B.: Genetic therapies against HIV: approximate methods. Nature Biotechnology 25, 1444–1454 (2007)

    Article  Google Scholar 

  39. Perez, E.E., Wang, J., Miller, J.C., Jouvenot, Y., Kim, K.A., Liu, O., et al.: Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotechnology 26, 808–816 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sorathiya, A., Liò, P., Sguanci, L. (2009). Mathematical Model of HIV Superinfection and Comparative Drug Therapy. In: Andrews, P.S., et al. Artificial Immune Systems. ICARIS 2009. Lecture Notes in Computer Science, vol 5666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03246-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03246-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03245-5

  • Online ISBN: 978-3-642-03246-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics