Abstract
Visual haptic-based biomolecular docking systems could be used for both research and e-learning in research intensive disciplines such as biology, physical chemistry, molecular medicine, biophysics, structural biology, bioinformatics, etc. The assembly of molecules in a three-dimensional space or molecular docking is used for rational drug design where a ligand docks onto a receptor. The computer-aided design systems allow a real-time interactive visualization and manipulation of molecules in virtual environment. These techniques help the user to understand molecular interactions. In recent years, besides the visualization techniques, there has been increasing interest in using haptic interfaces to facilitate the exploration and analysis of molecular docking. Haptic device enables the users to manipulate the molecules and feel its interaction during the docking process in virtual experiment on computer. In this paper, we describe a visual haptic-based biomolecular docking system that we developed for research in helix-helix docking and propose its application in e-learning. We also describe haptic-based collaborative e-learning scenarios.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Martinez-Jimenez, P., Pontes-Pedrajas, A., Polo, J., Climent-Bellido, M.S.: Learning in Chemistry with Virtual Laboratories. J. Chemical Education 80(3), 346–352 (2003)
Morozov, M., Tanakov, A., Gerasimov, A., Bystrov, D., Cvirco, E.: Virtual Chemistry Laboratory for School Education. In: Fourth IEEE International Conference on Advanced Learning Technologies (ICALT 2004), pp. 605–608 (2004)
Riganelli, A., Gervasi, O., Laganana, A., Alberti, M.: A Multiscale virtual reality approach to the chemical experiments. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2658, pp. 324–330. Springer, Heidelberg (2003)
Luo, Y., Guo, P., Hasegawa, S., Sato, M.: An Interactive Molecular Visualization System for Education in Immersive Multi-projection Virtual Environment. In: Third International Conference on Image and Graphics, Hong Kong, pp. 485–488. IEEE Computer Society Press, Los Alamitos (2004)
Sayle, R.A., Milner-White, E.J.: Rasmol: Biomolecular graphics for all. Trends in Biochemical Sciences (TIBS) 20(9), 374 (1995)
DeLano, W.L.: The pymol molecular graphics system (2002), http://www.pymol.org
Sourina, O., Korolev, N.: Geometric querying of time-dependent data for data mining in molecular dynamics. In: Proc. of Cyberworlds 2004, pp. 351–355. IEEE Press, Los Alamitos (2004)
Sourina, O., Korolev, N.: Visual Mining and Spatio-Temporal Querying in Molecular Dynamics. The Journal of Computational and Theoretical Nanoscience 2(4), 492–498 (2005)
Sankaranarayanan, G., Weghorst, S., Sanner, M., Gillet, A., Olson, A.: Role of haptics in teaching structural molecular biology. In: 11th Symposium on Haptic Interfaces for virtual Environments and Teleoperator Systems, pp. 363–366 (2003)
Davies, R.A., John, N.W., MacDonald, J.N., Hughes, K.H.: Visualization: Visualization of molecular quantum dynamics: a molecular visualization tools with integrated Web3D and haptics. In: 10th International Conf. on Web Technology Web3D 2005, pp. 143–150 (2005)
Persson, P.B., Cooper, M.D., Tibell, L.A.E., Ainsworth, S., Ynnerman, A., Jonsson, B.-H.: Designing and Evaluating a Haptic System for Biomolecular Education. In: IEEE Virtual Reality Conference, pp. 171–178 (2007)
JMol: an open-source Java viewer for chemical structures in 3D, http://jmol.sourceforge.net
WebMO: free World Wide Web-based interface to computational chemistry packages with features for chemicals, crystals, materials and biomolecules, http://www.webmo.net
WebMol: Java PDB Viewer, http://www.cmpharm.ucsf.edu/~walther/webmol.html
FirstGlance in Jmol; A simple tool for macromolecular visualization, http://molvis.sdsc.edu/fgij/index.htm
Lai-Yuen, S.K., Lee, Y.-S.: Interactive Computer-Aided Design for Molecular Docking and Assembly. Computer-Aided Design & Applications 3(6), 701–709 (2006)
Liu, Q., Sourin, A.: Function-defined Shape Metamorphoses in Visual Cyberworlds. The Visual Computer 22(12), 977–990 (2006)
Wei, L., Sourin, A., Sourina, O.: Function-based Haptic Interaction in Cyberworlds. In: 2007 International Conference on Cyberworlds, pp. 225–232. IEEE Press, Los Alamitos (2007)
Wei, L., Sourin, A., Sourina, O.: Function-based visualization and haptic rendering in shared virtual spaces. The Visual Computer 24(10), 871–880 (2008)
Sourina, O., Torres, J., Wang, J.: Visual Haptic-based Biomolecular Docking. In: 2008 International Conference on Cyberworlds, pp. 240–250. IEEE Press, Los Alamitos (2008)
PDB - Protein Data Bank, Brookhaven National Laboratory, http://www.rcsb.org/pdb
Bowie, J.U.: Helix packing in membrane proteins. J. Mol. Biol. 272(5), 780–789 (1997)
Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, A.C.G., Profeta Jr., S., Weiner, P.K.: A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765–784 (1984)
Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Com. Chem. 4, 187–217 (1983)
Lii, J.-H., Allinger, N.L.: The MM3 force field for amides, polypeptides and proteins. J. Comp. Chem. 12, 186–199 (1991)
Allinger, N.L., Chen, K., Lii, J.-H.: An improved force field (MM4) for saturated hydrocarbons. J. Comp. Chem. 17, 642–668 (1996)
Halgren, T.A.: Merck molecular force field. IV. Conformational energies and geometries. J. Comp. Chem. 17, 587–615 (1996)
Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996)
Damm, W., Frontera, A., Tirado-Rives, J., Jorgensen, W.L.: OPLS all-atom force field for carbohydrates. J. Comp. Chem. 18, 1955–1970 (1997)
Rizzo, R.C., Jorgensen, W.L.: OPLS all-atom model for amines: resolution of the amine hydration problem. J. Am. Chem. Soc. 121, 4827–4836 (1999)
OPLS-aa force field parameter, http://egad.berkeley.edu/EGAD_manual/EGAD/examples/energy_function/ligands/oplsaa.txt (August 28, 2007)
Martin, M.G.: Comparison of the AMBER, CHARMM, COMPASS, GROMOS, OPLS, TraPPE and UFF force fields for Prediction of vapor-liquid coexistence curves and liquid densities. Fluid Phase Equilib. 248, 50–55 (2006)
Can, T., Chen, C.-I., Wang, Y.-F.: Efficient molecular surface generation using level-set methods. Journal of Molecular Graphics and Modelling 25(4), 442–454 (2006)
Lorensen, W.E., Cline, H.E.: Marching Cubes: A high resolution 3D surface construction algorithm. Computer Graphics 21(4), 163–169 (1987)
Yin, H., Slusky, J.S., Berger, B.W., Walters, R.S., Vilaire, G., Litvinov, R.I., Lear, J.D., Caputo, G.A., Bennett, J.S., DeGrado, W.F.: Computational Design of Peptides That Target Transmembrane Helices. Science 315, 1817–1822 (2007)
Prasolova-Førland, E., Sourin, A., Sourina, O.: Place Metaphors in Educational Cyberworlds: a Virtual Campus Case Study. The Visual Computer 22(12), 1015–1028 (2006)
Sourin, A., Sourina, O., Prasolova-Førland, E.: Cyber-learning in Cyberworlds. Journal of Cases on Information Technology 8(4), 55–70 (2006)
Sourin, A., Sourina, O., Wei, L., Gagnon, P.: Visual Immersive Haptic Mathematics in Shared Virtual Spaces. In: Gavrilova, M.L., Tan, C.J.K. (eds.) Transactions on Computational Science III. LNCS, vol. 5300, pp. 1–19. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Sourina, O., Torres, J., Wang, J. (2009). Visual Haptic-Based Biomolecular Docking and Its Applications in E-Learning. In: Pan, Z., Cheok, A.D., Müller, W., Rhalibi, A.E. (eds) Transactions on Edutainment II. Lecture Notes in Computer Science, vol 5660. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03270-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-03270-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03269-1
Online ISBN: 978-3-642-03270-7
eBook Packages: Computer ScienceComputer Science (R0)