Skip to main content

Parallel Implementation of Lattice Boltzmann Flow Simulation in Fortran-DVM Language

  • Conference paper
Parallel Computing Technologies (PaCT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5698))

Included in the following conference series:

  • 1079 Accesses

Abstract

During the last twenty years the lattice Boltzmann method (LBM) has been developed as an alternative approach for modeling of fluid dynamics. A parallel implementation of the LBM for 3D fluid dynamics simulations using the Fortran-DVM language is presented. The LBM is parallelized by using spatial decomposition and implemented on a distributed memory cluster MVS-100K. The test problem has been solved for different number of processors (from 1 to 1024). Pictures of flows are compared visually with the similar pictures published in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McNamara, G.R., Zanetti, G.: Use of the Boltzmann Equation to Simulate Lattice-Gas Automata. Phys. Rev. Lett. 61, 2332–2335 (1988)

    Article  Google Scholar 

  2. Wolf-Gladrow, D.A.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models. Lecture Notes in Mathematics, vol. 1725. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  3. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, New York (2001)

    MATH  Google Scholar 

  4. Sukop, M.C., Thorne Jr., D.T.: Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Springer, Berlin (2007)

    Google Scholar 

  5. Qian, Y.H., D’Humieres, D., Lallemand, P.: Lattice BGK Models for Navier-Stokes Equation. Europhys. Lett. 17, 479–484 (1992)

    Article  MATH  Google Scholar 

  6. Xiaoyi, H., Luo, L.-S.: Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E. 56, 6333–6336 (1997)

    Google Scholar 

  7. Chen, S., Doolen, G.D.: Lattice Boltzmann methods for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  8. Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids 9, 1591–1598 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brownlee, R.A., Gorban, A.N., Levesley, J.: Stability and stabilization of the lattice Boltzmann method. Phys. Rev. E. 75, 1–17 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Encyclopedia of Microfluidics and Nanofluidics. In: Dongqing, L. (ed.), 2226 p, in 3 volumes. Springer (2008)

    Google Scholar 

  11. Chen, Y.S., Shan, X.W., Chen, H.D.: New direction of computational fluid dynamics and its applications in industry. Sci. China Ser. E-Tech. Sci. 50, 521–533 (2007)

    Article  MATH  Google Scholar 

  12. Hu, S., Yah, G., Shi, W.: A lattice Boltzmann model for compressible perfect gas. Acta Mechanica Sinica 13, 218–226 (1997)

    Article  Google Scholar 

  13. Bing, H., Feng, W.-B., Z. Wu, Cheng, Y.-M.: Parallel Simulation of Compressible Fluid Dynamics Using Lattice Boltzmann Method. In: The First International Symposium on Optimization and Systems Biology (OSB 2007), Beijing, China, pp. 451–458 (2007)

    Google Scholar 

  14. Baoming, L., Kwok Daniel, Y.: A Lattice Boltzmann model with high Reynolds number in the presence of external forces to describe microfluidics. Heat and Mass Transfer 40, 843–851 (2004)

    Article  Google Scholar 

  15. Zhou, Y., Zhang, R., Staroselsky, I., Chen, H.: Numerical simulation of laminar and turbulent buoyancy-driven flows using a lattice Boltzmann based algorithm. Int. J. Heat Mass Tran. 47, 4869–4879 (2004)

    Article  MATH  Google Scholar 

  16. Thürey, N., Rüde, U.: Stable free surface flows with the lattice Boltzman method on adaptively coarsened grids. Computing and Visualization in Science, 179–196 (2008), doi:10.1007/s00791-008-0090-4

    Google Scholar 

  17. Zhou, J.G.: A lattice Boltzmann model for the shallow water equations with turbulence modeling. Int. J.l of Modern Physics C 13, 1135–1150 (2002)

    Article  MATH  Google Scholar 

  18. Zhang, X., Bengough, A.G., Crawford, J.W., Young, I.M.: A lattice BGK model for advection and anisotropic dispersion equation. Advances in water Resources 25, 1–8 (2002)

    Article  Google Scholar 

  19. Shiyi, C., Hudong, C., Daniel, M., William, M.: Lattice Boltzmann model for simulation of magnetohydrodynamics. Phys. Rev. Lett. 67, 3776–3779 (1991)

    Article  Google Scholar 

  20. Derksen, J.J.: The Lattice-Boltzmann Method for Multiphase Fluid Flow Simulations and Euler-Lagrange Large-Eddy Simulations. In: Marchisio, D.L., Fox, R.O. (eds.) Multiphase Reacting Flows: Modelling and Simulation, pp. 181–228. Springer, Vienna (2007)

    Chapter  Google Scholar 

  21. Swift Michael, R., Osborn, W.R., Yeomans, J.M.: Lattice Boltzmann Simulation of Nonideal Fluids. Physical Review Lett. 75, 830–833 (1995)

    Article  Google Scholar 

  22. Xu, Y.-s., Liu, C.-q., Yu, H.-d.: New studying of lattice Boltzmann method for two-phase driven in porous media. Appl. Math. and Mech. 23, 387–393 (2002)

    Article  MATH  Google Scholar 

  23. Shu, C., Niu, X.D., Chew, Y.T.: A Lattice Boltzmann Kinetic Model for Microflow and Heat Transfer. J. Stat. Phys. 121, 239–255 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Medvedev, D.A., Ershov, A.P., Kupershtokh, A.L.: Numerical Investigation of Hydrodynamic and Electrohydrodynamic Instabilities (in Russian). Dynamics of Continuous media 120, 93–103 (2002)

    MATH  Google Scholar 

  25. Medvedev, D.A., Kupershtokh, A.L.: Mesoscopic Simulations of Electrohydrodynamic Flows (in Russian). Fizicheskaja mezomekhanika (Physical mesomechanics) 9, 27–35 (2006)

    Google Scholar 

  26. Bhatnagar, P., Gross, E.P., Krook, M.K.: A model for collision processes in gases: I. small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  27. Konovalov, N.A., Krukov, V.A., Mihailov, S.N., Pogrebtsov, A.A.: Fortran DVM — a Language for Portable Parallel Program Development. In: Proc. of Software For Multiprocessors & Supercomputers: Theory, Practice, Experience, Institute for System Programming RAS, Moscow, pp. 124–133 (1994)

    Google Scholar 

  28. Krukov, V.A.: Working out of Parallel Programs for Computing Clusters and Networks (in Russian). The Information Technology and Computing Systems (1-2), 42–61 (2003)

    Google Scholar 

  29. DVM-System, http://www.keldysh.ru/dvm

  30. Z̆unic̆, Z., Hribers̆ek, M., S̆kerget, L., Ravnik, J.: 3D Lid Driven Cavity Flow By Mixed Boundary and Finite Element Method. In: Wesseling, P., Oñate, E., Périaux, J. (eds.) ECCOMAS CFD 2006, TU Delft, The Netherlands, pp. 1–12 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kamenshchikov, L. (2009). Parallel Implementation of Lattice Boltzmann Flow Simulation in Fortran-DVM Language. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2009. Lecture Notes in Computer Science, vol 5698. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03275-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03275-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03274-5

  • Online ISBN: 978-3-642-03275-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics