Abstract
The work is devoted to multicriteria approaches to rule evaluation. It analyses desirable properties (in particular the property M, property of confirmation and hypothesis symmetry) of popular interestingness measures of decision and association rules. Moreover, it analyses relationships between the considered interestingness measures and enclosure relationships between the sets of non-dominated rules in different evaluation spaces. It’s main result is a proposition of a multicriteria evaluation space in which the set of non-dominated rules will contain all optimal rules with respect to any attractiveness measure with the property M. By determining the area of rules with desirable value of a confirmation measure in the proposed multicriteria evaluation space one can narrow down the set of induced rules only to the valuable ones. Furthermore, the work presents an extension of an apriori-like algorithm for generation of rules with respect to attractiveness measures possessing valuable properties and shows some applications of the results to analysis of rules induced from exemplary datasets.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Azevedo, P.J., Jorge, A.M.: Comparing rule Measures for Predictive Association Rules. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 510–517. Springer, Heidelberg (2007)
Agrawal, R., Imielinski, T., Swami, A.: Mining associations between sets of items in massive databases. In: Proc. of the 1993 ACM-SIGMOD Int’l. conf. on Management of Data, pp. 207–216 (1993)
Bayardo, R.J., Agrawal, R.: Mining the most interesting rules. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Proc. of the Fifth ACM-SIGKDD Int’l. conf. on Knowledge Discovery and Data Mining. Advances in Knowledge Discovery and Data Mining, pp. 145–154. AAAI/MIT Press, Cambridge (1996)
Bramer, M.: Principles of Data Mining. Springer, New York (2007)
Briand, L., El Emam, K., Morasca, S.: On the Application of Measurement Theory in Software Engineering. Empirical Software Engineering 1, 61–88 (1995)
Brin, S., Motwani, R., Ullman, J., Tsur, S.: Dynamic itemset counting and implication rules for market basket data. In: Proc. of the 1997 ACM-SIGMOD Int’l. conf. on the Management of Data, pp. 255–264 (1997)
Brzezinska, I., Slowinski, R.: Monotonicity of a Bayesian confirmation measure in rule support and confidence. In: Recent Developments in Artificial Intelligence Methods, Gliwice. AI-METH Series, pp. 39–42 (2005)
Brzezinska, I., Greco, S., Slowinski, R.: Investigation of monotone link between confirmation measures and rule support and confidence. Research Report RA-025/05, Institute of Computing Science, Poznan University of Technology, Poznan (2005)
Brzezińska, I., Greco, S., Słowiński, R.: Mining Pareto–optimal rules with respect to support and anti-support. Engineering Applications of Artificial Intelligence 20(5), 587–600 (2007)
Carnap, R.: Logical Foundations of Probability, 2nd edn. University of Chicago Press, Chicago (1962)
Christensen, D.: Measuring confirmation. Journal of Philosophy XCVI, 437–461 (1999)
Clark, P., Boswell, P.: Rule induction with CN2: some recent improvements. In: Machine Learning: Proc. of the Fifth European Conference, pp. 151–163 (1991)
Cichosz, P.: Systemy ucza̧ce siȩ. Warszawa, WNT (2000)
Cios, K., Pedrycz, W., Świniarski, R.: Data mining methods for knowledge discovery. Kluwer Academic Publishers, Dordrecht (1999)
Crupi, V., Tentori, K., Gonzalez, M.: On Bayesian Theories of Evidential Support: Theoretical and empirical issues. Philosophy of Science (to appear)
Dhar, V., Tuzhilin, A.: Abstract-driven pattern discovery in databases. IEEE Transactions on Knowledge and Data Engineering 5(6) (1993)
Earman, J.: Bayes or Bust: A Critical Examination of Bayesian Confirmation Theory. MIT Press, Cambridge (1992)
Eells, E.: Rational Decision and Causality. Cambridge University Press, Cambridge (1982)
Eells, E., Fitelson, B.: Symmetries and asymmetries in evidential support. Philosophical Studies 107(2), 129–142 (2002)
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.): Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press (1996)
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: From data mining to knowledge discovery. In: [20], pp. 1–36 (1999)
Fitelson, B.: Studies in Bayesian Confirmation Theory. Ph.D. Thesis, University of Wisconsin, Madison (2001)
Francisci, D., Collard, M.: Multi-criteria evaluation of interesting dependencies according to a data mining approach. In: Congress on Evolutionary Computation, Canberra, Australia, 12, pp. 1568–1574. IEEE Computer Society Press, Los Alamitos (2003)
Frawley, W.J., Piatetsky-Shapiro, G., Matheus, C.J.: Knowledge discovery in databases: an overview. In: Piatetsky-Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 1–27. AAAI/MIT Press (1991)
Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Data mining using two-dimensional optimized association rules: scheme, algorithms, and visualization. In: Proc. of the 1996 ACM-SIGMOD Int’l. conf. on the Management of Data, pp. 13–23 (1996)
Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. ACM Computing Surveys 38(3) (2006)
Good, I.J.: The best explicatum for weight of evidence. Journal of Statistical Computation and Simulation 19, 294–299 (1984)
Greco, S., Pawlak, Z., Słowiński, R.: Can Bayesian confirmation measures be useful for rough set decision rules? Engineering Applications of Artificial Intelligence 17, 345–361 (2004)
Greco, S., Słowiński, R., Szczȩch, I.: Analysis of monotonicity properties of some rule interestingness measures. In: Materiały II Krajowej Konferencji nt. Technologie Przetwarzania Danych. Poznań, 24-26.09.2007, Wydawnictwo Politechniki Poznańskiej, Poznań, pp. 151–161 (2007)
Greco, S., Matarazzo, E., Słowiński, R.: Parameterized rough set model using rough membership and Bayesian confirmation measures. International Journal of Approximate Reasoning 49(2), 285–300 (2008)
Guillet, F., Hamilton, H.J. (eds.): Quality Measures in Data Mining. Studies in Computational Intelligence, vol. 43. Springer, Heidelberg (2006)
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proc. ACM SIGMOD Conference on Management of Data, pp. 1–12 (2000)
Han, J., Kamber, M.: Data mining: Concepts and techniques. Morgan Kaufman Pub., San Francisco (2000)
Hebert, C., Cremilleux, B.: A Unified View of Objective Interestingness Measures. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 533–547. Springer, Heidelberg (2007)
Heckerman, D.: An axiomatic framework for belief updates. In: Kanal, L., Lemmer, J. (eds.) Unconfidence in Artificial Intelligence, vol. 2, pp. 11–22. Elsevier Science Publishers, New York (1988)
Hempel, C.G.: Studies in the logic of confirmation (I). Mind 54, 1–26 (1945)
Hilderman, R., Hamilton, H.: Knowledge Discovery and Measures of Interest. Kluwer Academic Publishers, Dordrecht (2001)
Horwich, P.: Probability and Evidence. Cambridge University Press, Cambridge (1982)
Horvitz, E., Heckerman, D.: The inconsistent use of certainty measures in artificial intelligence research. In: Kanal, L., Lemmer, J. (eds.) Uncertainty in Artificial Intelligence, vol. (1), pp. 137–151. Elsevier Science Publishers, New York (1986)
International Business Machines, IBM Intelligent Miner User’s Guide, Version 1, Release 1 (1996)
Jeffrey, H.: Some tests of significance treated by theory of probability. Proceedings of the Cambridge Philosophical Society 31, 203–222 (1935)
Joyce, J.: The Foundations of Causal Decision Theory. Cambridge University Press, Cambridge (1999)
Kamber, M., Shingal, R.: Evaluating the interestingness of characteristic rules. In: Proccedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD 1996), Portland, Oregon, pp. 263–266 (1996)
Keynes, J.: A Treatise on Probability. Macmillan, London (1921)
Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., Verkamo, A.I.: Finding interesting rules from large sets of discovered association rules. In: Proc. of Third Int’l. conf. on Information and Knowledge Management (CIKM 1994), pp. 401–407. ACM Press, New York (1994)
Kemeny, J., Oppenheim, P.: Degrees of factual support. Philosophy of Science 19, 307–324 (1952)
Kohavi, R.: Scaling up the accuracy of Naive–Bayes Classifiers: a decision–tree hybrid. In: Proc. of the 2nd Int’l. conf. on Knowledge Discovery and Data Mining (1996)
Kubat, M., Bratko, I., Michalski, R.S.: Review of machine learning methods. In: [54], pp. 3–70
Kyburg, H.: Recent work in inductive logic. In: Recent Work In Philosophy, pp. 87–150. Rowman &Allanheld, Lanham (1983)
Lenca, P., Meyer, P., Vaillant, B., Lallich, S.: On selecting interestingness measures for association rules: User oriented description and multiple criteria decision aid. European Journal of Operational Research 184(2), 610–626 (2008)
Łukasiewicz, J.: Die logischen Grundlagen der Wahrscheinlichkeitsrechnung. In: Borkowski, L. (ed.) Jan Łukasiewicz –Selected Works, pp. 16–63. North Holland Publishing Company/Polish Scientific Publishers, Amsterdam, London (1913) (1970)
Mackie, J.L.: The relevance citerion of confirmation. The British Journal for the Philosophy of Science 20, 27–40 (1969)
McGarry, K.: A survey of interestingness measures for knowledge discovery. In: The Knowledge Engineering Review, vol. 20(1), pp. 39–61. Cambridge University Press, Cambridge (2005A)
Michalski, R.S.: A theory and methodology of inductive learning. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning: An Artificial Intelligence Approach, pp. 83–134. Morgan Kaufman, San Francisco (1983)
Michalski, R.S.: Machine Learning, Data Mining and Knowledge Discovery. Principles and Applications. In: Tutorials of Intelligent Information Systems, IIS 1997, Zakopane, IPI. PAN Press (1997)
Michalski, R.S., Bratko, I., Kubat, M. (eds.): Machine learning and data mining. John Wiley & Sons, Chichester (1998)
Michell, J.: Measurement scales and statistics: a clash of paradigms. Psychological Bulletin 3, 398–407 (1986)
Morimoto, Y., Fukuda, T., Matsuzawa, H., Tokuyama, T., Yoda, K.: Algorithms for mining association rules for binary segmentation of huge categorical databases. In: Proc. of the 24th Very Large Data Bases conf., pp. 380–391 (1998)
Morishita, S.: On classification and regression. In: Arikawa, S., Motoda, H. (eds.) DS 1998. LNCS (LNAI), vol. 1532, pp. 40–57. Springer, Heidelberg (1998)
Morzy, T.: Odkrywanie asocjacji: algorytmy i struktury danych. Ośrodek Wydawnictw Naukowych, Poznań (2004)
Morzy, T., Zakrzewicz, M.: Data mining. In: Błażewicz, J., Kubiak, W., Morzy, T., Rusinkiewicz, M.E. (eds.) Handbook on data management in information systems, pp. 487–565. Springer, Heidelberg (2003)
Morzy, M.: Eksploracja danych - przegla̧d dostȩpnych metod i dziedzin zastosowań. In: VI edycja Hurtownia danych i business intelligence, Centrum Promocji Informatyki, Warszawa, Poland (2006)
Morzy, M.: Oracle Data Mining - odkrywanie wiedzy w dużych wolumenach danych. In: XI Krajowa Konferencja PLOUG 2005 Systemy informatyczne. Projektowanie, implementowanie, eksploatowanie, Zakopane, Poland, pp. 18–21 (2005)
Msweb dataset, http://kdd.ics.uci.edu/databases/msweb/msweb.html
Nicod, J.: Le probleme de la logique de l’induction. Alcan, Paris (1923)
Pawlak, Z.: Rough Sets. Int. Journal of Computer and Information Science 11, 341–356 (1982)
Pawlak, Z., Słowiński, K., Słowiński, R.: Rough classification of patients after highly selected vagotomy for duodenal ulcer. International J. Man-Machine Studies 24, 413–433 (1986)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1991)
Pawlak, Z.: Some Issues on Rough Sets. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 1–58. Springer, Heidelberg (2004)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27 (2007); Rough sets: Some extensions. Information Sciences 177(1), 28–40; Rough sets and boolean reasoning. Information Sciences 177(1), 41–73
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufman, San Francisco (1988)
Piatetsky-Shapiro, G.: Discovery, analysis, and presentation of strong rules. In: Knowledge Discovery in Databases, ch. 12. AAAI/MIT Press (1991)
Pollard, S.: Milne’s measure of confirmation. Analysis 59, 335–337 (1999)
Popper, K.R.: The Logic of Scientific Discovery. Hutchinson, London (1959)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)
Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)
Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 119–140. Plenum, New York (1978)
Rosenkrantz, R.: Bayesian confirmation: paradise regained. The British Journal for the Philosophy of Science 45, 467–476 (1994)
Schlesinger, G.: Measuring degrees of confirmation. Analysis 55, 208–212 (1995)
Schum, D.: The Evidential Foundations of Probabilistic Reasoning. Wiley, New York (1994)
Silberschatz, A., Tuzhilin, A.: What Makes Patterns Interesting in Knowledge Discovery Systems. IEEE Transactions on Knowledge and Data Engineering 8(6), 970–974 (1996)
Słowiński, R.: Rozszerzenie teorii zbiorów przybliżonych na atrybuty ze skala̧ preferencji, w: Materiały konferencji Informatyka teoretyczna: metody analizy informacji niekompletnej i rozproszonej, Białystok, pp. 114–128 (2000)
Słowiński, R., Greco, S.: Measuring attractiveness of rules from the viewpoint of knowledge representation, prediction and efficiency of intervention. In: Szczepaniak, P., Kacprzyk, J., Niewiadomski, A. (eds.) AWIC 2005. LNCS (LNAI), vol. 3528, pp. 11–22. Springer, Heidelberg (2005)
Słowiński, R., Brzezińska, I., Greco, S.: Application of Bayesian Confirmation Measures for Mining Rules from Support–confidence Pareto-optimal set. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS, vol. 4029, pp. 1018–1026. Springer, Heidelberg (2006)
Słowiński, R., Szczȩch, I., Urbanowicz, M., Greco, S.: Experiments with induction of association rules with respect to support and anti-support. Research Report RA-018/06, Institute of Computing Science, Poznań University of Technology, Poznań (2006)
Słowiński, R., Szczȩch, I., Urbanowicz, M., Greco, S.: Mining Association Rules with respect to Support and Anti-support - Experimental Results. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 534–542. Springer, Heidelberg (2007)
Stefanowski, J.: Algorytmy indukcji reguł decyzyjnych w odkrywaniu wiedzy. Rozprawa habilitacyjna, Politechnika Poznańska, Instytut Informatyki, Poznań (2001)
Stevens, S.S.: On the theory of scales of measurement. Science 103, 677–680 (1946)
Szczepaniak, P.S., Segovia, J., Kacprzyk, J., Zadeh, L.A. (eds.): Intelligent Exploration of the Web. Springer, Heidelberg (2003)
Szczepaniak, P.S.: Obliczenia inteligentne, szybkie przekształcenia i klasyfikatory. Akademicka Oficyna Wydawnicza EXIT, Warszawa (2004)
Tan, P.-N., Kumar, V., Srivastava, J.: Selecting the right objective measure for association analysis. Inf. Syst. 29(4), 293–313 (2004)
Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Education, Inc., London (2006)
Webb, G.I.: OPUS: An efficient admissible algorithm for unordered search. Journal of Artificial Intelligence Research 3, 431–465 (1995)
Yao, Y.Y., Zhong, N.: An analysis of quantitative measures associated with rules. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 479–488. Springer, Heidelberg (1999)
Zakrzewicz, M.: Data Mining i odkrywanie wiedzy w bazach danych. In: Materiały konferencyjne III Konferencji Polskiej Grupy Użytkowników Systemu Oracle, Zakopane (1997)
Zakrzewicz, M.: Optymalizacja wykonania zapytań eksploracyjnych w systemach baz danych, Rozprawa habilitacyjna, Politechnika Poznańska, Instytut Informatyki, Poznań (2004)
Zembrowicz, R., Żytkow, J.: From contingency tables to various forms of knowledge in databases. In: [20], pp. 329–352
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Szczȩch, I. (2009). Multicriteria Attractiveness Evaluation of Decision and Association Rules. In: Peters, J.F., Skowron, A., Wolski, M., Chakraborty, M.K., Wu, WZ. (eds) Transactions on Rough Sets X. Lecture Notes in Computer Science, vol 5656. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03281-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-03281-3_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03280-6
Online ISBN: 978-3-642-03281-3
eBook Packages: Computer ScienceComputer Science (R0)