Skip to main content

Boneh-Boyen Signatures and the Strong Diffie-Hellman Problem

  • Conference paper
Pairing-Based Cryptography – Pairing 2009 (Pairing 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5671))

Included in the following conference series:

Abstract

The Boneh-Boyen signature scheme is a pairing based short signature scheme which is provably secure in the standard model under the q-Strong Diffie-Hellman assumption. In this paper, we prove the converse of this statement, and show that forging Boneh-Boyen signatures is actually equivalent to solving the q-Strong Diffie-Hellman problem. Using this equivalence, we exhibit an algorithm which, on the vast majority of pairing-friendly curves, recovers Boneh-Boyen private keys in \(O(p^{\frac{2}{5}+\varepsilon})\) time, using \(O(p^{\frac{1}{5}+\varepsilon})\) signature queries. We present implementation results comparing the performance of our algorithm and traditional discrete logarithm algorithms such as Pollard’s lambda algorithm and Pollard’s rho algorithm. We also discuss some possible countermeasures and strategies for mitigating the impact of these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Artin, M.: Algebra. Prentice Hall, United States (1991)

    MATH  Google Scholar 

  2. Bak, J., Newman, D.J.: Complex Analysis, 2nd edn. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  3. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Boneh, D., Boyen, X.: Efficient selective-ID identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. Journal of Cryptology 21(2), 149–177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boyen, X.: The uber-assumption family – a unified complexity framework for bilinear groups. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008), http://www.cs.stanford.edu/~xb/pairing08/

    Chapter  Google Scholar 

  8. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Brown, J.W., Churchill, R.V.: Complex Variables and Applications, 7th edn. McGraw-Hill, New York (2004)

    Google Scholar 

  10. Cheon, J.H.: Security analysis of the Strong Diffie-Hellman problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F. (eds.): Handbook of elliptic and hyperelliptic curve cryptography. Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  12. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics 156(16), 3113–3121 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koblitz, N., Menezes, A.: Another look at generic groups. Advances in Mathematics of Communications 1(1), 13–28 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koblitz, N., Menezes, A.: Another look at non-standard discrete log and Diffie-Hellman problems. Journal of Mathematical Cryptology 2(4), 311–326 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kozaki, S., Kutsuma, T., Matsuo, K.: Remarks on Cheon’s algorithms for pairing-related problems. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 302–316. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Lynn, B.: The Pairing-Based Cryptography Library, version 0.4.18 (2008), http://crypto.stanford.edu/pbc/

  18. MAGMA Computational Algebra System, http://magma.maths.usyd.edu.au/magma/

  19. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. Fundamentals E85-A(2), 481–484 (2002)

    Google Scholar 

  20. Reardon, J.: Sdhkangaroo: A kangaroo attack against the strong Diffie Hellman problem (2007), http://www.cs.uwaterloo.ca/~jreardon/programs.html

  21. Teske, E.: On random walks for Pollard’s rho method. Math. Comp. 70(234), 809–825 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wei, V.K., Yuen, T.H.: More short signatures without random oracles. Cryptology ePrint Archive, Report 2005/463 (2005), http://eprint.iacr.org/2005/463

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jao, D., Yoshida, K. (2009). Boneh-Boyen Signatures and the Strong Diffie-Hellman Problem. In: Shacham, H., Waters, B. (eds) Pairing-Based Cryptography – Pairing 2009. Pairing 2009. Lecture Notes in Computer Science, vol 5671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03298-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03298-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03297-4

  • Online ISBN: 978-3-642-03298-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics