Abstract
When performing a Tate pairing (or a derivative thereof) on an ordinary pairing-friendly elliptic curve, the computation can be looked at as having two stages, the Miller loop and the so-called final exponentiation. As a result of good progress being made to reduce the Miller loop component of the algorithm (particularly with the discovery of “truncated loop” pairings like the R-ate pairing [18]), the final exponentiation has become a more significant component of the overall calculation. Here we exploit the structure of pairing-friendly elliptic curves to reduce to a minimum the computation required for the final exponentiation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avanzi, R., Cohen, H., Doche, D., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman and Hall/CRC, Boca Raton (2006)
Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)
Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003)
Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly groups. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 17–25. Springer, Heidelberg (2004)
Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)
Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography, vol. 2. Cambridge University Press, Cambridge (2005)
Bos, J., Coster, M.: Addition chain heuristics. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 400–407. Springer, Heidelberg (1990)
Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Designs, Codes and Cryptology 37, 133–141 (2005)
Devegili, A.J., Scott, M., Dahab, R.: Implementing cryptographic pairings over Barreto-Naehrig curves. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 197–207. Springer, Heidelberg (2007)
Doche, C., Lange, T.: Arithmetic of elliptic curves. In: Handbook of Elliptic and Hyperelliptic Curve Cryptography, pp. 267–302. Chapman & Hall/CRC, Boca Raton (2006)
Downey, L., Sethi: Computing sequences with addition chains. Siam Journal of Computing 3, 638–696 (1981)
Freeman, D.: Constructing pairing-friendly elliptic curves with embedding degree 10. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 452–465. Springer, Heidelberg (2006)
Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing friendly elliptic curves. Cryptology ePrint Archive, Report 2006/372 (2006), http://eprint.iacr.org/2006/372
Granger, R., Page, D., Smart, N.P.: High security pairing-based cryptography revisited. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 480–494. Springer, Heidelberg (2006)
Hankerson, D., Menezes, A., Scott, M.: Software implementation of pairings. CACR Technical Report (2008), http://www.cacr.math.uwaterloo.ca/
Hei, L., Dong, J., Pei, D.: Implementation of cryptosystems based on Tate pairing. J. Comput. Sci. & Technology 20(2), 264–269 (2005)
Kachisa, E., Schaefer, E., Scott, M.: Constructing Brezing-Weng pairing-friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg (2008)
Lee, E., Lee, H.-S., Park, C.-M.: Efficient and generalized pairing computation on abelian varieties. Cryptology ePrint Archive, Report 2008/040 (2008), http://eprint.iacr.org/2008/040
Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of applied cryptography. CRC Press, Boca Raton (1996), http://cacr.math.uwaterloo.ca/hac
Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve traces for FR-reduction. IEICE Transactions on Fundamentals E84-A(5), 1234–1243 (2001)
Naehrig, M., Barreto, P.S.L.M., Schwabe, P.: On compressible pairings and their computation. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 371–388. Springer, Heidelberg (2008)
Nogami, Y., Akane, M., Sakemi, Y., Kato, H., Morikawa, Y.: Integer variable X-based ate pairing. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 178–191. Springer, Heidelberg (2008)
Olivos, J.: On vectorial addition chains. Journal of Algorithms 2, 13–21 (1981)
Scott, M., Barreto, P.: Compressed pairings. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004), http://eprint.iacr.org/2004/032/
Stam, M., Lenstra, A.K.: Efficient subgroup exponentiation in quadratic and sixth degree extensions. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 318–332. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J. (2009). On the Final Exponentiation for Calculating Pairings on Ordinary Elliptic Curves. In: Shacham, H., Waters, B. (eds) Pairing-Based Cryptography – Pairing 2009. Pairing 2009. Lecture Notes in Computer Science, vol 5671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03298-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-03298-1_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03297-4
Online ISBN: 978-3-642-03298-1
eBook Packages: Computer ScienceComputer Science (R0)