Abstract
This paper presents efficient formulas for computing cryptographic pairings on the curve y 2 = c x 3 + 1 over fields of large characteristic. We provide examples of pairing-friendly elliptic curves of this form which are of interest for efficient pairing implementations.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arène, C., Lange, T., Naehrig, M., Ritzenthaler, C.: Faster pairing computation. Cryptology ePrint Archive, Report 2009/155 (2009), http://eprint.iacr.org/2009/155
Barreto, P.S.L.M., Galbraith, S.D., Ó’ Héigeartaigh, C., Scott, M.: Efficient pairing computation on supersingular Abelian varieties. Cryptology ePrint Archive, Report 2004/375 (2004), http://eprint.iacr.org/2004/375
Barreto, P.S.L.M., Galbraith, S.D., Ó’ Héigeartaigh, C., Scott, M.: Efficient pairing computation on supersingular Abelian varieties. Des. Codes Cryptography 42(3), 239–271 (2007)
Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–369. Springer, Heidelberg (2002)
Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003)
Barreto, P.S.L.M., Lynn, B., Scott, M.: Efficient implementation of pairing-based cryptosystems. Journal of Cryptology 17(4), 321–334 (2004)
Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly groups. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 17–25. Springer, Heidelberg (2004)
Barreto, P.S., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)
Bernstein, D.J., Lange, T.: Explicit-formulas database, http://www.hyperelliptic.org/EFD
Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Des. Codes Cryptography 37(1), 133–141 (2005)
Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal of Cryptology 17(4), 297–319 (2004)
Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)
Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. Cryptology ePrint Archive, Report 2006/372 (2006), http://eprint.iacr.org/2006/372
Galbraith, S.D.: Pairings. London Mathematics Society Lecture Note Series, vol. 317, pp. 183–213. Cambridge University Press, Cambridge (2005)
Galbraith, S.D., Scott, M.: Exponentiation in pairing-friendly groups using homomorphisms. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 211–224. Springer, Heidelberg (2008)
Hess, F., Smart, N.P., Vercauteren, F.: The Eta pairing revisited. IEEE Transactions on Information Theory 52(10), 4595–4602 (2006)
Joux, A.: A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology 17(4), 263–276 (2004)
Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing-friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg (2008)
Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36. Springer, Heidelberg (2005)
Lee, E., Lee, H.S., Park, C.M.: Efficient and generalized pairing computation on Abelian varieties. Cryptology ePrint Archive, Report 2008/040 (2008), http://eprint.iacr.org/2008/040
Matsuda, S., Kanayama, N., Hess, F., Okamoto, E.: Optimised versions of the Ate and twisted Ate pairings. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 302–312. Springer, Heidelberg (2007), http://eprint.iacr.org/2007/013
Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptology 17(4), 235–261 (2004)
Monagan, M., Pearce, R.: Rational simplification modulo a polynomial ideal. In: ISSAC 2006, pp. 239–245. ACM, New York (2006)
Perez, L.J.D., Kachisa, E.J., Scott, M.: Implementing cryptographic pairings: a MAGMA tutorial. Cryptology ePrint Archive, Report 2009/072 (2009), http://eprint.iacr.org/2009/072
Scott, M.: Faster identity based encryption. Electronics Letters 40(14), 861–862 (2004)
Scott, M.: Faster pairings using an elliptic curve with an efficient endomorphism. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 258–269. Springer, Heidelberg (2005)
Scott, M., Benger, N., Charlemagne, M., Perez, L.J.D., Kachisa, E.J.: Fast hashing to G2 on pairing friendly curves. Cryptology ePrint Archive, Report 2008/530 (2008), http://eprint.iacr.org/2008/530
Vercauteren, F.: Optimal pairings. Cryptology ePrint Archive, Report 2008/096 (2008), http://eprint.iacr.org/2008/096
Zhao, C.A., Zhang, F., Huang, J.: A note on the Ate pairing. Cryptology ePrint Archive, Report 2007/247 (2007), http://eprint.iacr.org/2007/247
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Costello, C., Hisil, H., Boyd, C., Gonzalez Nieto, J., Wong, K.KH. (2009). Faster Pairings on Special Weierstrass Curves. In: Shacham, H., Waters, B. (eds) Pairing-Based Cryptography – Pairing 2009. Pairing 2009. Lecture Notes in Computer Science, vol 5671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03298-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-03298-1_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03297-4
Online ISBN: 978-3-642-03298-1
eBook Packages: Computer ScienceComputer Science (R0)