Abstract
This paper introduces a Matlab graphical user interface (GUI) that provides an easy operation of several Blind Source Separation (BSS) algorithms together with adjustment of their parameters. BSSGUI enables working with input and output data, multiple signal plots, and saving of output variables to the base Matlab workspace or to a file. The Monte Carlo Analysis allows for the validation of particular features of BSS algorithms integrated into the package. The BSSGUI package is available for free at http://bssgui.wz.cz.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cichocki, A., Amari, S.-I.: Adaptive Signal and Image Processing: Learning Algorithms and Applications. Wiley, New York (2002)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley Interscience, New York (2001)
Comon, P.: Independent Component Analysis, a new concept? Signal Processing 36(3), 287–314 (1994)
Parra, L., Spence, C.: Convolutive Blind Separation of Non-Stationary Sources. IEEE Trans. on Speech and Audio Processing 8(3), 320–327 (2000)
Koldovský, Z., Tichavský, P., Oja, E.: Efficient Variant of Algorithm FastICA for Independent Component Analysis Attaining the Cramér-Rao Lower Bound. IEEE Trans. on Neural Networks 17(5) (September 2006)
Hyvärinen, A.: Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)
Yeredor, A.: Blind separation of Gaussian sources via second-order statistics with asymptotically optimal weighting. IEEE Signal Processing Letters 7, 197–200 (2000)
Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., Moulines, E.: A blind source separation technique using second-order statistics. IEEE Trans. Signal Processing 45, 434–444 (1997)
Tichavský, P., Doron, E., Yeredor, A., Nielsen, J.: A Computationally Affordable Implementation of An Asymptotically Optimal BSS Algorithm for AR Sources. In: Proc. EUSIPCO 2006, Florence, Italy (September 2006)
Pham, D.-T., Cardoso, J.-F.: Blind separation of instantaneous mixtures of non stationary sources. IEEE Trans. Signal Processing 49(9), 1837–1848 (2001)
Tichavský, P., Yeredor, A.: Fast Approximate Joint Diagonalization Incorporating Weight Matrices. IEEE Transactions of Signal Processing 57(3), 878–891 (2009)
Koldovský, Z., Málek, J., Tichavský, P., Deville, Y., Hosseini, S.: Extension of EFICA Algorithm for Blind Separation of Piecewise Stationary non Gaussian Sources. In: Proc. ICASSP 2008, Las Vegas, Nevada, USA, April 2008, pp. 1913–1916 (2008)
Tichavský, P., Yeredor, A., Koldovský, Z.: A Fast Asymptotically Efficient Algorithm for Blind Separation of a Linear Mixture of Block-Wise Stationary Autoregressive Processes. To be Presented on ICASSP 2009 (April 2009)
Tichavský, P., Koldovský, Z., Doron, E., Yeredor, A., Herrero, G.G.: Blind signal separation by combining two ICA algorithms: HOS-based EFICA and time structure-based WASOBI. In: Proc. of EUSIPCO 2006, Florence (September 2006)
Tichavský, P., Koldovský, Z., Yeredor, A., Herrero, G.G., Doron, E.: A Hybrid Technique for Blind Non-Gaussian and Time-Correlated Sources Using a Multicomponent Approach. IEEE Trans. on Neural Networks 19(3), 421–430 (2008)
Herrero, G.G., Koldovský, Z., Tichavský, P., Egiazarian, K.: A Fast Algorithm for Blind Separation of Non-Gaussian and Time-Correlated Signals. In: Proceedings of 15th European Signal Processing Conference (EUSIPCO 2007), September 2007, pp. 1731–1735 (2007)
Cardoso, J.-F., Souloumiac, A.: Blind Beamforming from non-Gaussian Signals. IEE Proc.-F 140(6), 362–370 (1993)
Koldovský, Z., Tichavský, P.: Time-domain blind audio source separation using advanced component clustering and reconstruction. In: Proc. of HSCMA 2008, Trento, Italy, May 2008, pp. 216–219 (2008)
Lee, T.-W., Girolami, M., Sejnowski, T.J.: Independent Component Analysis using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources. Neural Computation 11(2), 417–441 (1999)
Tichavský, P., Koldovský, Z., Oja, E.: Speed and Accuracy Enhancement of Linear ICA Techniques Using Rational Nonlinear Functions. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 285–292. Springer, Heidelberg (2007)
Tichavský, P., Koldovský, Z.: Optimal Pairing of Signal Components Separated by Blind Techniques. IEEE Signal Processing Letters 11(2), 119–122 (2004)
Publically available MatlabTM codes of Petr Tichavský, http://si.utia.cas.cz/downloadPT.htm
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Petkov, J., Koldovský, Z. (2009). BSSGUI – A Package for Interactive Control of Blind Source Separation Algorithms in MATLAB. In: Esposito, A., Vích, R. (eds) Cross-Modal Analysis of Speech, Gestures, Gaze and Facial Expressions. Lecture Notes in Computer Science(), vol 5641. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03320-9_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-03320-9_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03319-3
Online ISBN: 978-3-642-03320-9
eBook Packages: Computer ScienceComputer Science (R0)