Abstract
Companion Modeling is a methodology used to facilitate adaptive management of renewable resources by their users. It is using role-playing games (RPG) and multiagent simulations to validate initial models representing the functioning of complex systems to be managed. In this research, we propose a novel agent model construction methodology in which classification learning is applied to the RPG log data in Companion Modeling. This methodology enables a systematic model construction that handles multi-parameters, independent of the modelers’ ability. There are three problems in applying classification learning to the RPG log data: 1) It is difficult to gather enough data for the number of features because the cost of gathering data is high. 2) Noise data can affect the learning results because the amount of data may be insufficient. 3) The learning results should be explained as a human decision making model and should be recognized by the expert as reflecting reality. We realized an agent model construction system using the following two approaches: 1) Using a feature selection method, the feature subset that has the best prediction accuracy is identified. In this process, the important features chosen by the expert are always included. 2) The expert eliminates irrelevant features from the learning results after evaluating the learning model through a visualization of the results. Finally, using the RPG log data from a Companion Modeling case study on rice production in northeastern Thailand, we confirm the capability of this methodology.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Almuallim, H., Dietterich, T.G.: Learning Boolean Concepts in the Presence of Many Irrelevant Features. Artificial Intelligence 69, 279–305 (1994)
Bousquet, F., Bakam, I., Proton, H., Le Page, C.: Cormas: common-pool resources and multi-agent Systems. In: Mira, J., Moonis, A., de Pobil, A.P. (eds.) IEA/AIE 1998. LNCS, vol. 1416, pp. 826–838. Springer, Heidelberg (1998)
Bousquet, F., Barreteau, O., Le Page, C., Mullon, C., Weber, J.: An environmental modelling approach. The use of multi-agent simulations. In: Blasco, F., Weill, A. (eds.) Advances in environmental and ecological modeling, pp. 113–122. Elsevier, Amsterdam (1999)
Bousquet, F., Trébuil, G.: Synergies between multi-agent systems and role-playing games in companion modeling for integrated natural resorce management in southeast Asia. In: Proceedings of International Conference on Simulation and Modeling 2005 (SIMMOD 2005), C6-03 (2005)
Bousquet, F., Barreteau, O., d’Aquino, P., Etienne, M., Boissau, S., Aubert, S., Le Page, C., Babin, D., Castella, J.C.: Multi-agent systems and role games: an approach for ecosystem co-management. In: Janssen, M. (ed.) Complexity and Ecosystem Management: The Theory and Practice of Multi-agent Approaches, pp. 248–285. Edward Elgar Publishers (2002)
Gilbert, N., Troitzsch, K.G.: Simulation for the social scientist. Open University Press, Milton Keynes (1999)
Gilbert, N., Maltby, S., Asakawa, T.: Participatory simulations for developing scenarios in environmental resource management. In: Proceedings of Third Workshop on Agent-Based Simulation, pp. 67–72 (2002)
Helbing, D., Farkas, I.J., Vicsek, T.: Simulating Dynamical Features of Escape Panic. Nature 407(6803), 487–490 (2000)
Ishino, Y., Yoshinaga, K., Terano, T.: SIBILE: A Decision Aid to Extract Knowledge from Data Using Simulated Breeding and Inductive Learning Techniques. In: Proceedings of Pacific-Asian Conference on Expert Systems (PACES 1995), pp. 448–455 (1995)
Kita, H., Sato, H., Mori, N., Ono, I.: U-Mart System, Software for Open Experiments of Artificial Market. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 1328–1333 (2003)
Kohavi, R., John, G.: Wrappers for feature selection. Artificial Intelligence 97, 273–324 (1997)
Murakami, Y., Ishida, T., Kawasoe, T., Hishiyama, R.: Scenario Description for Multi-Agent Simulation. In: Proceedings of International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2003), pp. 369–376 (2003)
Quinlan, J.R.: Induction for Decision Trees. Machine Learning 1(1), 81–106 (1986)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)
Vejpas, C., Bousquet, F., Naivinit, W., Trébuil, G.: Participatory Modelling for Managing Rainfed Lowland Rice Varieties and Seed System in Lower Northeast Thailand. In: Proceedings of the Mekong Rice Conference, p. 15 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Torii, D., Bousquet, F., Ishida, T., Trébuil, G., Vejpas, C. (2009). Using Classification Learning in Companion Modeling. In: Lukose, D., Shi, Z. (eds) Multi-Agent Systems for Society. PRIMA 2005. Lecture Notes in Computer Science(), vol 4078. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03339-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-03339-1_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03337-7
Online ISBN: 978-3-642-03339-1
eBook Packages: Computer ScienceComputer Science (R0)