Skip to main content

Exploiting Temporal Authors Interests via Temporal-Author-Topic Modeling

  • Conference paper
Advanced Data Mining and Applications (ADMA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5678))

Included in the following conference series:

  • 2343 Accesses

Abstract

This paper addresses the problem of discovering temporal authors interests. Traditionally some approaches used stylistic features or graph connectivity and ignored semantics-based intrinsic structure of words present between documents, while previous topic modeling approaches considered semantics without time factor, which is against the spirits of writing. We present Temporal-Author-Topic (TAT) approach which can simultaneously model authors interests and time of documents. In TAT mixture distribution over topics is influenced by both co-occurrences of words and timestamps of the documents. Consequently, topics occurrence and correlations change over time, while the meaning of particular topic almost remains unchanged. By using proposed approach we can discover topically related authors for different time periods and show how authors interests and relationships change over time. Experimental results on research papers dataset show the effectiveness of proposed approach and dominance over Author-Topic (AT) model, due to not changing the meaning of particular topic overtime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrieu, C., Freitas, N.D., Doucet, A., Jordan, M.I.: An Introduction to MCMC for Machine Learning. Journal of Machine Learning 50, 5–43 (2003)

    Article  MATH  Google Scholar 

  2. Azzopardi, L., Girolami, M., Risjbergen, K.V.: Investigating the Relationship between Language Model Perplexity and IR Precision-Recall Measures. In: Proc. of the 26th ACM SIGIR, Toronto, Canada, July 28-August 1 (2003)

    Google Scholar 

  3. Balog, K., Bogers, T., Azzopardi, L., Rijke, M.D., Bosch, A.V.D.: Broad Expertise Retrieval in Sparse Data Environments. In: Proc. of the SIGIR, pp. 551–558 (2007)

    Google Scholar 

  4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Journal of Machine Learning Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  5. Daud, A., Li, J., Zhou, L., Muhammad, F.: A Generalized Topic Modeling Approach for Maven Search. In: Proc. of the APWeb-WAIM, Suzhou, China, April 2-4 (2009)

    Google Scholar 

  6. DBLP Bibliography Database, http://www.informatik.uni-trier.de/~ley/db/

  7. Diederich, J., Kindermann, J., Leopold, E., Paass, G.: Authorship Attribution with Support Vector Machines. Applied Intelligence 19(1) (2003)

    Google Scholar 

  8. Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: Exploring the Computing Literature using Temporal Graph Visualization. Technical Report, Department of Computer Science, University of Arizona (2003)

    Google Scholar 

  9. Gray, A., Sallis, P., MacDonell, S.: Softwareforensics: Extending Authorship Analysis Techniques to Computer Programs. In: Proc. of the 3rd IAFL, Durham NC (1997)

    Google Scholar 

  10. Griffiths, T.L., Steyvers, M.: Finding Scientific Topics. In: Proc. of the National Academy of Sciences, USA, pp. 5228–5235 (2004)

    Google Scholar 

  11. Zhang, J., Tang, J., Li, J.: Expert Finding in a Social Network. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 1066–1069. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. McCallum, A.: Multi-label Text Classification with A Mixture Model Trained by EM. In: Proc. of AAAI 1999 Workshop on Text Learning (1999)

    Google Scholar 

  13. Mutschke, P.: Mining Networks and Central Entities in Digital Libraries: A Graph Theoretic Approach applied to Co-author Networks. Intelligent Data Analysis, 155–166 (2003)

    Google Scholar 

  14. Rosen-Zvi, M., Griffiths, T., Steyvers, M.: Smyth. P.: The Author-Topic Model for Authors and Documents. In: Proc. of the 20th conference on UAI, Canada (2004)

    Google Scholar 

  15. Steyvers, M., Smyth, P., Griffiths, T.: Probabilistic Author-Topic Models for Information Discovery. In: Proc. of the 10th ACM SIGKDD, Seattle, Washington (2004)

    Google Scholar 

  16. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: Extraction and Mining of Academic Social Networks. In: Proc. of the 14th ACM SIGKDD (2008)

    Google Scholar 

  17. Wang, X., McCallum, A.: Topics over Time: A Non-Markov Continuous-Time Model of Topical Trends. In: Proc. of the 12th ACM SIGKDD, pp. 424–433 (2006)

    Google Scholar 

  18. White, S., Smyth, P.: Algorithms for Estimating Relative Importance in Networks. In: Proc. of the 9th ACM SIGKDD, pp. 266–275 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daud, A., Li, J., Zhou, L., Muhammad, F. (2009). Exploiting Temporal Authors Interests via Temporal-Author-Topic Modeling. In: Huang, R., Yang, Q., Pei, J., Gama, J., Meng, X., Li, X. (eds) Advanced Data Mining and Applications. ADMA 2009. Lecture Notes in Computer Science(), vol 5678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03348-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03348-3_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03347-6

  • Online ISBN: 978-3-642-03348-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics