Skip to main content

On Models of a Nondeterministic Computation

  • Conference paper
Computer Science - Theory and Applications (CSR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5675))

Included in the following conference series:

  • 535 Accesses

Abstract

In this paper we consider a nondeterministic computation performed by deterministic multi-head 2-way automata with a read-only access to an auxiliary memory. The memory contains additional data (a guess) and the computation is successful iff it is successful for some memory content.

Also we consider the case of restricted guesses in which a guess should satisfy some constraint.

We show that the standard complexity classes such as L, NL, P, NP, PSPACE can be characterized in terms of these models of nondeterministic computation. These characterizations differ from the well-known ones by absence of alternation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amano, M., Iwama, K.: Undecidability on Quantum Finite Automata. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 368–375. ACM, New York (1999)

    Google Scholar 

  2. Bach, E., Shallit, J.: Algorithmic Number Theory. Efficient Algorithms, vol. I. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  3. Bojańczyk, M.: Tree-Walking Automata, http://www.mimuw.edu.pl/~bojan/papers/twasurvey.pdf

  4. Borchert, B.: Formal Language Characterizations of P, NP, and PSPACE (2003) (submitted)

    Google Scholar 

  5. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. of ACM 28, 114–133 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cook, S.A.: Characterization of Pushdown Machines in Terms of Time-Bounded Computers. J. of ACM 18, 4–18 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Geffert, V.: A Communication Hierarchy of Parallel Computations. Theoretical Computer Science 198, 99–130 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grädel, E., Kolaitis, P., Libkin, L.: Finite Model Theory and its Applications. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  9. Holzer, M., McKenzie, P.: Alternating and Empty Alternating Auxiliary Stack Automata. Theoretical Computer Science 299, 307–326 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  11. Hromkovič, J., Karhumäki, J., Rovan, B., Slobodová, A.: On the Power of Syncronization in Parallel Computations. Discr. Appl. Math. 32, 155–182 (1991)

    Article  MATH  Google Scholar 

  12. Ibarra, O.H.: Characterizations of Some Tape and Time Complexity Classes of Turing Machines of Multihead and Auxiliary Stack Automata. J. of Comp. and Sys. Sci. 5, 88–117 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shen, A., Vereshchagin, N.: Mathematical Logic and Computation Theory. Languages and Calculi. In: MCCME, Moscow (1999) (in Russian)

    Google Scholar 

  14. Smullyan, R.M.: Theory of Formal Systems. Princeton Univ. Press, Princeton (1961)

    Book  MATH  Google Scholar 

  15. Vyalyi, M.N.: On Models of a Nondeterministic Computation. Electronic preprint, arXiv:0811.2586 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vyalyi, M.N. (2009). On Models of a Nondeterministic Computation. In: Frid, A., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds) Computer Science - Theory and Applications. CSR 2009. Lecture Notes in Computer Science, vol 5675. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03351-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03351-3_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03350-6

  • Online ISBN: 978-3-642-03351-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics