Skip to main content

Delaunay Triangulation of Imprecise Points Simplified and Extended

  • Conference paper
Algorithms and Data Structures (WADS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5664))

Included in the following conference series:

  • 1426 Accesses

Abstract

Suppose we want to compute the Delaunay triangulation of a set P whose points are restricted to a collection \({\mathcal R}\) of input regions known in advance. Building on recent work by Löffler and Snoeyink[21], we show how to leverage our knowledge of \({\mathcal R}\) for faster Delaunay computation. Our approach needs no fancy machinery and optimally handles a wide variety of inputs, eg, overlapping disks of different sizes and fat regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aronov, B., Har-Peled, S.: On approximating the depth and related problems. SIAM Journal on Computing 38(3), 899–921 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandyopadhyay, D., Snoeyink, J.: Almost-Delaunay simplices: Nearest neighbor relations for imprecise points. In: SODA, pp. 403–412 (2004)

    Google Scholar 

  3. Ben-Or, M.: Lower bounds for algebraic computation trees. In: STOC, pp. 80–86 (1983)

    Google Scholar 

  4. Bern, M., Eppstein, D., Gilbert, J.: Provably good mesh generation. J. Comput. System Sci. 48(3), 384–409 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bern, M., Eppstein, D., Teng, S.-H.: Parallel construction of quadtrees and quality triangulations. Internat. J. Comput. Geom. Appl. 9(6), 517–532 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies for geometric computing with uncertainty. Theory Comput. Syst. 38(4), 411–423 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chazelle, B.: Triangulating a simple polygon in linear time. Disc. and Comp. Geometry 6, 485–524 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chazelle, B., Devillers, O., Hurtado, F., Mora, M., Sacristán, V., Teillaud, M.: Splitting a Delaunay triangulation in linear time. Algorithmica 34(1), 39–46 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chazelle, B., Mulzer, W.: Computing hereditary convex structures. To appear in SoCG (2009)

    Google Scholar 

  10. Clarkson, K.L., Seshadhri, C.: Self-improving algorithms for Delaunay triangulations. In: SoCG, pp. 148–155 (2008)

    Google Scholar 

  11. de Berg, M.: Linear size binary space partitions for uncluttered scenes. Algorithmica 28(3), 353–366 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational geometry, 3rd edn. Springer, Berlin (2000); Algorithms and applications

    Book  MATH  Google Scholar 

  13. de Berg, M., David, H., Katz, M.J., Overmars, M.H., van der Stappen, A.F., Vleugels, J.: Guarding scenes against invasive hypercubes. Computational Geometry: Theory and Applications 26(2), 99–117 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Berg, M., van der Stappen, A.F., Vleugels, J., Katz, M.J.: Realistic input models for geometric algorithms. Algorithmica 34(1), 81–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Djidjev, H.N., Lingas, A.: On computing Voronoi diagrams for sorted point sets. Internat. J. Comput. Geom. Appl. 5(3), 327–337 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Franciosa, P.G., Gaibisso, C., Gambosi, G., Talamo, M.: A convex hull algorithm for points with approximately known positions. Internat. J. Comput. Geom. Appl. 4(2), 153–163 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guibas, L.J., Salesin, D., Stolfi, J.: Epsilon geometry: building robust algorithms from imprecise computations. In: SoCG, pp. 208–217 (1989)

    Google Scholar 

  18. Guibas, L.J., Salesin, D., Stolfi, J.: Constructing strongly convex approximate hulls with inaccurate primitives. Algorithmica 9, 534–560 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Held, M., Mitchell, J.S.B.: Triangulating input-constrained planar point sets. Inf. Process. Lett. 109(1), 54–56 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kirkpatrick, D.G.: Efficient computation of continuous skeletons. In: FOCS, pp. 18–27 (1979)

    Google Scholar 

  21. Löffler, M., Snoeyink, J.: Delaunay triangulations of imprecise points in linear time after preprocessing. In: SoCG, pp. 298–304 (2008)

    Google Scholar 

  22. Rajan, V.T.: Optimality of the Delaunay triangulation in ℝd. Disc. and Comp. Geometry 12, 189–202 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. van Kreveld, M.J., Löffler, M., Mitchell, J.S.B.: Preprocessing imprecise points and splitting triangulations. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 544–555. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buchin, K., Löffler, M., Morin, P., Mulzer, W. (2009). Delaunay Triangulation of Imprecise Points Simplified and Extended. In: Dehne, F., Gavrilova, M., Sack, JR., Tóth , C.D. (eds) Algorithms and Data Structures. WADS 2009. Lecture Notes in Computer Science, vol 5664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03367-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03367-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03366-7

  • Online ISBN: 978-3-642-03367-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics