Abstract
Suppose we want to compute the Delaunay triangulation of a set P whose points are restricted to a collection \({\mathcal R}\) of input regions known in advance. Building on recent work by Löffler and Snoeyink[21], we show how to leverage our knowledge of \({\mathcal R}\) for faster Delaunay computation. Our approach needs no fancy machinery and optimally handles a wide variety of inputs, eg, overlapping disks of different sizes and fat regions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aronov, B., Har-Peled, S.: On approximating the depth and related problems. SIAM Journal on Computing 38(3), 899–921 (2008)
Bandyopadhyay, D., Snoeyink, J.: Almost-Delaunay simplices: Nearest neighbor relations for imprecise points. In: SODA, pp. 403–412 (2004)
Ben-Or, M.: Lower bounds for algebraic computation trees. In: STOC, pp. 80–86 (1983)
Bern, M., Eppstein, D., Gilbert, J.: Provably good mesh generation. J. Comput. System Sci. 48(3), 384–409 (1994)
Bern, M., Eppstein, D., Teng, S.-H.: Parallel construction of quadtrees and quality triangulations. Internat. J. Comput. Geom. Appl. 9(6), 517–532 (1999)
Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies for geometric computing with uncertainty. Theory Comput. Syst. 38(4), 411–423 (2005)
Chazelle, B.: Triangulating a simple polygon in linear time. Disc. and Comp. Geometry 6, 485–524 (1991)
Chazelle, B., Devillers, O., Hurtado, F., Mora, M., Sacristán, V., Teillaud, M.: Splitting a Delaunay triangulation in linear time. Algorithmica 34(1), 39–46 (2002)
Chazelle, B., Mulzer, W.: Computing hereditary convex structures. To appear in SoCG (2009)
Clarkson, K.L., Seshadhri, C.: Self-improving algorithms for Delaunay triangulations. In: SoCG, pp. 148–155 (2008)
de Berg, M.: Linear size binary space partitions for uncluttered scenes. Algorithmica 28(3), 353–366 (2000)
de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational geometry, 3rd edn. Springer, Berlin (2000); Algorithms and applications
de Berg, M., David, H., Katz, M.J., Overmars, M.H., van der Stappen, A.F., Vleugels, J.: Guarding scenes against invasive hypercubes. Computational Geometry: Theory and Applications 26(2), 99–117 (2003)
de Berg, M., van der Stappen, A.F., Vleugels, J., Katz, M.J.: Realistic input models for geometric algorithms. Algorithmica 34(1), 81–97 (2002)
Djidjev, H.N., Lingas, A.: On computing Voronoi diagrams for sorted point sets. Internat. J. Comput. Geom. Appl. 5(3), 327–337 (1995)
Franciosa, P.G., Gaibisso, C., Gambosi, G., Talamo, M.: A convex hull algorithm for points with approximately known positions. Internat. J. Comput. Geom. Appl. 4(2), 153–163 (1994)
Guibas, L.J., Salesin, D., Stolfi, J.: Epsilon geometry: building robust algorithms from imprecise computations. In: SoCG, pp. 208–217 (1989)
Guibas, L.J., Salesin, D., Stolfi, J.: Constructing strongly convex approximate hulls with inaccurate primitives. Algorithmica 9, 534–560 (1993)
Held, M., Mitchell, J.S.B.: Triangulating input-constrained planar point sets. Inf. Process. Lett. 109(1), 54–56 (2008)
Kirkpatrick, D.G.: Efficient computation of continuous skeletons. In: FOCS, pp. 18–27 (1979)
Löffler, M., Snoeyink, J.: Delaunay triangulations of imprecise points in linear time after preprocessing. In: SoCG, pp. 298–304 (2008)
Rajan, V.T.: Optimality of the Delaunay triangulation in ℝd. Disc. and Comp. Geometry 12, 189–202 (1994)
van Kreveld, M.J., Löffler, M., Mitchell, J.S.B.: Preprocessing imprecise points and splitting triangulations. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 544–555. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Buchin, K., Löffler, M., Morin, P., Mulzer, W. (2009). Delaunay Triangulation of Imprecise Points Simplified and Extended. In: Dehne, F., Gavrilova, M., Sack, JR., Tóth , C.D. (eds) Algorithms and Data Structures. WADS 2009. Lecture Notes in Computer Science, vol 5664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03367-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-03367-4_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03366-7
Online ISBN: 978-3-642-03367-4
eBook Packages: Computer ScienceComputer Science (R0)