Abstract
We present a new linear-time algorithm for constructing multiway search trees with near-optimal search cost whose running time is independent of the size of the node in the tree. With the analysis of our construction method, we provide a new upper bound on the average search cost for multiway search trees that nearly matches the lower bound. In fact, it is tight for infinitely many probability distributions. This problem is well-studied in the literature for the case of binary search trees. Using our new construction method, we are able to provide the tightest upper bound on the average search cost for an optimal binary search tree.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered indexes. Acta Informatica 1(3), 173–189 (1972)
Becker, P.: A new algorithm for the construction of optimal B-trees. Nordic Journal of Computing 1, 389–401 (1994)
Becker, P.: Construction of nearly optimal multiway trees. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS, vol. 1276, pp. 294–303. Springer, Heidelberg (1997)
Bent, S., Sleator, D., Tarjan, R.: Biased 2-3 trees. In: Annual Symposium on Foundations of Computer Science, pp. 248–254 (1980)
Bent, S., Sleator, D., Tarjan, R.: Biased search trees. SIAM J. Comput. 14(3), 545–568 (1985)
Feigenbaum, J., Tarjan, R.: Two new kinds of biased search trees. Bell Syst. Tech. J. 62, 3139–3158 (1983)
Garsia, A.M., Wachs, M.L.: A new algorithm for minimum cost binary trees. SIAM Journal on Computing 6, 622–642 (1977)
Gotlieb, L.: Optimal multi-way search trees. SIAM Journal of Computing 10(3), 422–433 (1981)
Hu, T.C., Tucker, A.C.: Optimal computer search trees and variable-length alphabetical codes. SIAM Journal on Applied Mathematics 21(4), 514–532 (1971)
Knuth, D.: The Art of Computer Programming: Sorting and Searching, vol. 3. Addison-Wesley, Reading (1973)
Knuth, D.: Optimum binary search trees. Acta Informatica 1, 79–110 (1971)
Mehlhorn, K.: Data structures and algorithms: Sorting und Searching. EATCS Monographs on Theoretical Computer Science, vol. 1. Springer, Berlin (1984)
Mehlhorn, K.: Nearly optimal binary search trees. Acta Inf. 5, 287–295 (1975)
Mehlhorn, K.: A best possible bound for the weighted path length of binary search trees. SIAM Journal on Computing 6, 235–239 (1977)
Prisco, R.D., Santis, A.D.: On binary search trees. Information Processing Letters 45(5), 249–253 (1993)
Prisco, R.D., Santis, A.D.: New lower bounds on the cost of binary search trees. Theor. Comput. Sci. 156(1&2), 315–325 (1996)
Shannon, C.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)
Vaishnavi, V.K., Kriegel, H.P., Wood, D.: Optimum multiway search trees. Acta Informatica 14(2), 119–133 (1980)
Yeung, R.: Alphabetic codes revisited. IEEE Transactions on Information Theory 37(3), 564–572 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bose, P., Douïeb, K. (2009). Efficient Construction of Near-Optimal Binary and Multiway Search Trees. In: Dehne, F., Gavrilova, M., Sack, JR., Tóth , C.D. (eds) Algorithms and Data Structures. WADS 2009. Lecture Notes in Computer Science, vol 5664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03367-4_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-03367-4_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03366-7
Online ISBN: 978-3-642-03367-4
eBook Packages: Computer ScienceComputer Science (R0)