Abstract
We study the problem of reconfiguring one list edge-coloring of a graph into another list edge-coloring by changing one edge color at a time, while at all times maintaining a list edge-coloring, given a list of allowed colors for each edge. First we show that this problem is PSPACE-complete, even for planar graphs of maximum degree 3 and just six colors. Then we consider the problem restricted to trees. We show that any list edge-coloring can be transformed into any other under the sufficient condition that the number of allowed colors for each edge is strictly larger than the degrees of both its endpoints. This sufficient condition is best possible in some sense. Our proof yields a polynomial-time algorithm that finds a transformation between two given list edge-colorings of a tree with n vertices using O(n 2) recolor steps. This worst-case bound is tight: we give an infinite family of instances on paths that satisfy our sufficient condition and whose reconfiguration requires Ω(n 2) recolor steps.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bonsma, P.S., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 738–749. Springer, Heidelberg (2007)
Borodin, O.V., Kostochka, A.V., Woodall, D.R.: List edge and list total colourings of multigraphs. J. Combinatorial Theory, Series B 71, 184–204 (1997)
Călinescu, G., Dumitrescu, A., Pach, J.: Reconfigurations in graphs and grids. SIAM J. Discrete Mathematics 22, 124–138 (2008)
Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colourings. In: Proc. of IWOCA 2008, pp. 182–196 (2008)
Fujino, T., Zhou, X., Nishizeki, T.: List edge-colorings of series-parallel graphs. IEICE Trans. Fundamentals E86-A, 1034–1045 (2003)
Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of Boolean satisfiability: computational and structural dichotomies. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 346–357. Springer, Heidelberg (2006)
Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theoretical Computer Science 343, 72–96 (2005)
Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 28–39. Springer, Heidelberg (2008)
Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley Interscience, New York (1995)
Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Computer and System Sciences 4, 177–192 (1970)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ito, T., Kamiński, M., Demaine, E.D. (2009). Reconfiguration of List Edge-Colorings in a Graph. In: Dehne, F., Gavrilova, M., Sack, JR., Tóth , C.D. (eds) Algorithms and Data Structures. WADS 2009. Lecture Notes in Computer Science, vol 5664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03367-4_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-03367-4_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03366-7
Online ISBN: 978-3-642-03367-4
eBook Packages: Computer ScienceComputer Science (R0)