Abstract
Alexandrov’s Theorem states that every metric with the global topology and local geometry required of a convex polyhedron is in fact the intrinsic metric of some convex polyhedron. Recent work by Bobenko and Izmestiev describes a differential equation whose solution is the polyhedron corresponding to a given metric. We describe an algorithm based on this differential equation to compute the polyhedron to arbitrary precision given the metric, and prove a pseudopolynomial bound on its running time.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alexandrov, A.D.: Convex Polyhedra. Springer, Berlin (2005)
Bobenko, A.I., Izmestiev, I.: Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes. Annales de l’Institut Fourier (2006) arXiv:math.DG/0609447
Cauchy, A.L.: Sur les polygones et les polyèdres, seconde mémoire. J. École Polytechnique, XVIe Cahier, Tome IX, 113–148 (1813); OEuvres Complètes, IIe Sèrie, Paris, vol. 1, pp. 26–38 (1905)
Demaine, E.D., Demaine, M.L., Lubiw, A., O’Rourke, J.: Enumerating foldings and unfoldings between polygons and polytopes. Graphs Comb. 18, 93–104 (2002)
Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms. Cambridge University Press, Cambridge (2007)
Fedorchuk, M., Pak, I.: Rigidity and polynomial invariants of convex polytopes. Duke Math. J. 129, 371–404 (2005)
Glickenstein, D.: Geometric triangulations and discrete Laplacians on manifolds (2005) arXiv:math/0508188v1
Kane, D., Price, G.N., Demaine, E.D.: A pseudopolynomial algorithm for Alexandrov’s theorem (2008) arXiv:0812.5030
Lubiw, A., O’Rourke, J.: When can a polygon fold to a polytope? Technical Report 048, Department of Computer Science, Smith College (1996); presented at Am. Math. Soc. Conf., October 5 (1996)
Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM J. Comput. 16, 647–668 (1987)
Sabitov, I.: The volume of a polyhedron as a function of its metric. Fundam. Prikl. Mat. 2(4), 1235–1246 (1996)
Sabitov, I.: The volume of a polyhedron as a function of its metric and algorithmical solution of the main problems in the metric theory of polyhedra. In: International School-Seminar Devoted to the N. V. Efimov’s Memory, pp. 64–65 (1996)
Sabitov, I.: The volume as a metric invariant of polyhedra. Discrete Comput. Geom. 20, 405–425 (1998)
Sechelmann, S.: Alexandrov polyhedron editor (2006), http://www.math.tu-berlin.de/geometrie/ps/software.shtml#AlexandrovPolyhedron
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kane, D., Price, G.N., Demaine, E.D. (2009). A Pseudopolynomial Algorithm for Alexandrov’s Theorem. In: Dehne, F., Gavrilova, M., Sack, JR., Tóth , C.D. (eds) Algorithms and Data Structures. WADS 2009. Lecture Notes in Computer Science, vol 5664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03367-4_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-03367-4_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03366-7
Online ISBN: 978-3-642-03367-4
eBook Packages: Computer ScienceComputer Science (R0)