Skip to main content

Computing the Implicit Voronoi Diagram in Triple Precision

  • Conference paper
Algorithms and Data Structures (WADS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5664))

Included in the following conference series:

Abstract

In a paper that considered arithmetic precision as a limited resource in the design and analysis of algorithms, Liotta, Preparata and Tamassia defined an “implicit Voronoi diagram” supporting logarithmic-time proximity queries using predicates of twice the precision of the input and query coordinates. They reported, however, that computing this diagram uses five times the input precision. We define a reduced-precision Voronoi diagram that similarly supports proximity queries, and describe a randomized incremental construction using only three times the input precision. The expected construction time is O(n (logn + logμ)), where μ is the length of the longest Voronoi edge; we can construct the implicit Voronoi from the reduced-precision Voronoi in linear time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liotta, G., Preparata, F.P., Tamassia, R.: Robust proximity queries: An illustration of degree-driven algorithm design. SIAM J. Comput. 28(3), 864–889 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  3. Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 7, 381–413 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shamos, M.I., Hoey, D.: Closest-point problems. In: SFCS 1975: Proceedings of the 16th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, pp. 151–162. IEEE Computer Society, Los Alamitos (1975)

    Google Scholar 

  6. Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A core library for robust numeric and geometric computation. In: SCG 1999: Proceedings of the fifteenth annual symposium on Computational geometry, pp. 351–359 (1999)

    Google Scholar 

  7. Yap, C.K.: Towards exact geometric computation. Comput. Geom. Theory Appl. 7(1-2), 3–23 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cgal, Computational Geometry Algorithms Library, http://www.cgal.org

  9. Burnikel, C., Könemann, J., Mehlhorn, K., Näher, S., Schirra, S., Uhrig, C.: Exact geometric computation in LEDA. In: SCG 1995: Proceedings of the eleventh annual symposium on Computational geometry, pp. 418–419 (1995)

    Google Scholar 

  10. Devillers, O., Preparata, F.P.: A probabilistic analysis of the power of arithmetic filters. Discrete and Computational Geometry 20(4), 523–547 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Devillers, O., Preparata, F.P.: Further results on arithmetic filters for geometric predicates. Comput. Geom. Theory Appl. 13(2), 141–148 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fortune, S., Van Wyk, C.J.: Efficient exact arithmetic for computational geometry. In: SCG 1995: Proceedings of the eleventh annual symposium on Computational geometry, pp. 163–172 (1993)

    Google Scholar 

  13. Shewchuk, J.R.: Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates. Discrete & Computational Geometry 18(3), 305–363 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sugihara, K., Iri, M.: Construction of the Voronoi diagram for ‘one million’ generators in single-precision arithmetic. Proceedings of the IEEE 80(9), 1471–1484 (1992)

    Article  Google Scholar 

  15. Boissonnat, J.D., Preparata, F.P.: Robust plane sweep for intersecting segments. SIAM J. Comput. 29(5), 1401–1421 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Boissonnat, J.D., Snoeyink, J.: Efficient algorithms for line and curve segment intersection using restricted predicates. In: SCG 1999: Proceedings of the fifteenth annual symposium on Computational geometry, pp. 370–379 (1999)

    Google Scholar 

  17. Chan, T.M.: Reporting curve segment intersections using restricted predicates. Comput. Geom. Theory Appl. 16(4), 245–256 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Aurenhammer, F.: Voronoi diagrams a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)

    Article  Google Scholar 

  19. Hoff, K.E., Keyser, J., Lin, M., Manocha, D., Culver, T.: Fast computation of generalized voronoi diagrams using graphics hardware. In: SIGGRAPH 1999: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 277–286 (1999)

    Google Scholar 

  20. Breu, H., Gil, J., Kirkpatrick, D., Werman, M.: Linear time Euclidean distance transform algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 529–533 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Millman, D.L., Snoeyink, J. (2009). Computing the Implicit Voronoi Diagram in Triple Precision. In: Dehne, F., Gavrilova, M., Sack, JR., Tóth , C.D. (eds) Algorithms and Data Structures. WADS 2009. Lecture Notes in Computer Science, vol 5664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03367-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03367-4_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03366-7

  • Online ISBN: 978-3-642-03367-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics