
Integer Programming:
Optimization and Evaluation are Equivalent

James B. Orlin1, Abraham P. Punnen2, and Andreas S. Schulz1

1 Massachusetts Institute of Technology, Cambridge, MA
2 Simon Fraser University, Vancouver, BC

Abstract We show that if one can find the optimal value of an inte-
ger programming problem min{cx : Ax ≥ b, x ∈ Zn

+} in polynomial
time, then one can find an optimal solution in polynomial time. We also
present a proper generalization to general integer programs and to local
search problems of the well-known result that optimization and augmen-
tation are equivalent for 0/1-integer programs. Our results imply that,
among other things, PLS-complete problems cannot have “near-exact”
neighborhoods, unless PLS = P.

1 Introduction

The following question arises naturally in the study of optimization problems
and has often been posed (see, e.g., [12, Ch. 15.2]): Is computing the value of an
optimal solution as hard as actually finding an optimal solution? Crescenzi and
Silvestri initiated the formal study of the relative complexity of evaluating the
optimal cost of an optimization problem versus constructing an optimal solution
and provided sufficient and necessary conditions for the existence of optimization
problems for which obtaining an optimal solution is harder than computing the
optimal value [4]. Ausiello et al. and Johnson pointed out that evaluation is ac-
tually as hard as finding an optimal solution for all optimization problems whose
associated decision problems are NP-complete [2,8]. Schulz reports on the rela-
tive complexity of 15 problems related to 0/1-integer programming,3 including
augmentation, optimization and evaluation, and shows that they are all oracle-
polynomial-time equivalent [16]. In this paper, we prove that evaluation and
optimization are polynomial-time equivalent for all integer linear programming
problems. That is, given a matrix A ∈ Zm×n and a vector b ∈ Zm, a polynomial-
time algorithm for finding the optimal value of min{cx : Ax ≥ b, x ∈ Zn+}, for
any c ∈ Zn, implies the existence of such an algorithm for finding an optimal
solution, arg min{cx : Ax ≥ b, x ∈ Zn+}. In fact, our result is slightly stronger
than this. As long as we are given bounds on the values that individual variables
may attain, the matrix A and the vector b need not be explicitly known. An
evaluation oracle, which accepts as input any objective function vector c and
returns the optimal objective function value, suffices. Our proof is constructive.
3 A 0/1-integer programming problem is one where the variables can have values 0 or

1 only.

2 J.B. Orlin, A.P. Punnen, and A.S. Schulz

The proof itself gives rise to a new problem, related to questions typically
brought up in postoptimality analysis of optimization problems, which we call
the “unit increment problem:” Given an optimal solution x∗ with respect to an
objective function vector c, find an optimal solution for c+ej , where ej is the j-th
unit vector.4 We show that an integer linear program can be solved in polynomial
time if and only if its unit increment problem can be solved in polynomial time.
For 0/1-integer programs, we prove that the unit increment problem is equivalent
to the augmentation problem.5 Hence, we have a proper generalization of a result
by Grötschel and Lovász and Schulz et al. who showed that optimization and
augmentation are polynomial-time equivalent for 0/1-integer programs [6,17]. A
relaxation to the augmentation problem, the ε-augmentation problem, can be
defined as follows: Given an objective function vector c and a feasible solution
x, find a feasible solution with better objective function value or assert that
x is ε-optimal. (Here, ε > 0, and a solution x is ε-optimal if cx ≤ (1 + ε)cx′

for all feasible solutions x′.) The corresponding unit increment problem, the ε-
unit increment problem, is defined as follows: Given an index j and an ε-optimal
solution with respect to an objective function vector c, find an ε-optimal solution
for c+ej . We show that an ε-optimal solution can be obtained in polynomial time
if and only if the ε-unit increment problem can be solved in polynomial time.
Moreover, we show that for 0-1 integer programs, the ε-augmentation problem
and the ε-unit increment problem are polynomial-time equivalent as well.

The concepts of unit increment and augmentation extend naturally to local
search, with interesting implications. For an integer programming or combinato-
rial optimization problem with a neighborhood function N , the local augmenta-
tion problem, given a feasible solution x and an objective function vector c, asks
for a solution in the neighborhood of x, N(x), of better objective function value,
if one exists. The local unit increment problem is defined similarly: Given an
index j and a locally optimal solution x with respect to c, find a locally optimal
solution for c + ej . We show that for a given neighborhood function, a locally
optimal solution can be computed in polynomial time if and only if the local
unit increment problem can be solved in polynomial time. However, in contrast
to the cases of global optimization and ε-optimization, for 0/1-integer programs,
the local unit increment problem and the local augmentation problem are not
known to be equivalent. In fact, it follows from our results that if polynomial
solvability of the local augmentation problem implies the polynomial solvability

4 In this part of the paper we assume, for convenience, that all objective function
coefficients are nonnegative. Most of our results hold true in general, if the unit
increment problem is extended to finding optimal solutions for c± ej .

5 The augmentation problem is defined as follows: Given a feasible solution and an
objective function vector, find a feasible solution of better objective function value,
if one exists.

Optimization and evaluation are equivalent 3

of the local unit increment problem, then all PLS-complete6 problems can be
solved in polynomial time.

A neighborhood function is said to be “exact” if every locally optimal solu-
tion is guaranteed to be globally optimal. A neighborhood function is said to be
“near exact” if every locally optimal solution is no worse than all but a polyno-
mial number of feasible solutions. Near-exact neighborhoods are related to the
domination number of local search heuristics [7]. We show that, for 0/1-integer
programs, polynomial solvability of the local augmentation problem implies poly-
nomial solvability of the local optimization problem whenever the corresponding
neighborhood is near exact. This implies that no PLS-complete problem can
possess a near-exact neighborhood, unless PLS = P.

The rest of the paper is organized as follows. In Section 2 we establish that
optimization and evaluation are polynomial-time equivalent for integer program-
ming problems. In Section 3, we show that the unit increment problem and the
optimization problem are polynomial-time equivalent. We also give a direct proof
that, for 0/1-integer programming problems, augmentation and unit increment
are polynomial-time equivalent as well. In Section 4 we extend this to the cases
of ε-optimization, ε-augmentation, and ε-unit increment. Section 5 contains our
results on local search; in particular, we show that even for 0/1-integer programs,
a local unit increment oracle is stronger than a local augmentation oracle, unless
PLS = P.

2 Evaluation versus optimization

It is well-known (see, e.g., [15, Ch. 17.1]) that if an integer program has a fi-
nite optimum, then it has an optimal solution of size (i.e., encoding length)
polynomially bounded by the size of the input. Hence, instead of considering
min{cx : Ax ≥ b, x ∈ Zn+}, we may restrict ourselves to solving min{cx : Ax ≥
b, x ≤ u, x ∈ Zn+}, for a vector u ∈ Zn+ whose encoding length is polynomial
in that of A, b, and c. So from now on, we consider a family F of integer pro-
gramming problems that is described as follows. For each instance of the family
we are given a vector u ∈ Zn+ such that the set X ⊆ Zn of feasible solutions
is contained in {0, 1, . . . , u1} × {0, 1, . . . , u2} × · · · × {0, 1, . . . , un}. We are also
given an evaluation oracle that contains the only additional information that we
have on X.7 (In particular, we do not explicitly need to know a matrix A and
a vector b such that X = {x ∈ Zn+ : Ax ≥ b, x ≤ u}.) For input vector c ∈ Zn,

6 The complexity classes PLS and PLS-complete were introduced by Johnson et al. to
capture the difficulty of finding local optima [9]. Prominent PLS-complete problems
include the max-cut problem with the flip neighborhood and the graph partitioning
problem with the swap neighborhood [14], the traveling salesman problem with the
k-exchange neighborhood (for sufficiently large, but constant k) [10], and the problem
of finding pure-strategy Nash equilibria in congestion games [5].

7 We may assume, without loss of generality, that there exists a feasible solution, i.e.,
X 6= ∅. Otherwise both problems, evaluation and optimization, would have to detect
infeasibility.

4 J.B. Orlin, A.P. Punnen, and A.S. Schulz

the oracle returns the optimal objective function value of min{cx : x ∈ X}. The
following is our main result.

Theorem 1. Given a family F of integer programming problems described by
an evaluation oracle, there is an oracle-polynomial time algorithm for solving the
optimization problem.

Proof. Let min{cx : x ∈ X} be the optimization problem to be solved, given
by an evaluation oracle and a vector u ∈ Zn+ such that X ⊆ {0 ≤ x ≤ u}. The
main ideas is as follows. Among all optimal solutions, let x′ be the one that is
lexicographically minimal. We perturb c in such a way that x′ remains optimal
for the perturbed vector c′ and is also optimal for the objective function vectors
c′ + ej , for all j = 1, 2, . . . , n. With n + 1 calls of the evaluation oracle we can
then recover x′ via x′j = (c′ + ej)x′ − c′x′, for j = 1, 2, . . . , n. If the size of c′ is
sufficiently small, this yields an oracle-polynomial time algorithm.

Here are the details. Let U := max{uj : j = 1, 2, . . . , n}+ 1. We define c′ as
follows:

c′j := U2n+1cj + U2(n−j)+1, for j = 1, 2, . . . , n.

Note that the encoding length of c′ is indeed polynomial in that of c and u. We
first show that, (i), every solution x∗ that is optimal for c′ is also optimal for c.
In fact, for any x ∈ X, we obtain that

cx∗ ≤ c′x∗

U2n+1
≤ c′x

U2n+1
= cx+

∑n
j=1 U

2(n−j)+1xj

U2n+1
< cx+ 1.

Together with the integrality of c, x∗, and x, this implies that cx∗ ≤ cx, prov-
ing (i). We now show that, (ii), if x is an optimal solution for c that is different
from x′, then c′(x′ − x) ≤ −U . Let i be the first index for which x′i < xi. Then,

c′(x′ − x) = U2(n−i)+1(x′i − xi) +
n∑

j=i+1

U2(n−j)+1(x′j − xj)

≤ −U2(n−i)+1 +
n∑

j=i+1

U2(n−j)+2

≤ −U.

It remains to show that x′ is optimal for c′ + ej , for an arbitrary, but fixed
index j ∈ {1, 2, . . . , n}. So, let x be some feasible solution different from x′. We
distinguish two cases. If x is optimal for c, then, with the help of (ii), we get

(c′ + ej)(x′ − x) = c′(x′ − x) + (x′j − xj) ≤ −U + U = 0.

If x is not optimal for c, we have

c′(x′ − x) = U2n+1c(x′ − x) +
n∑
j=1

U2(n−j)+1(x′j − xj)

≤ −U2n+1 +
n∑
j=1

U2(n−j)+2 ≤ −U.

Optimization and evaluation are equivalent 5

Hence, (c′ + ej)(x′ − x) ≤ 0. Thus, x′ is optimal for c′ and c′ + ej , and x′j =
(c′ + ej)x′ − c′x′. In particular, the j-th component of x′ can be computed by
two calls of the evaluation oracle. ut

3 The unit increment problem and global optimization

In this section we assume that all objective function vectors are nonnegative, for
convenience. All results can be extended in a straightforward way to arbitrary
objective function vectors. If c is an objective function vector, let C := max{cj :
j = 1, 2, . . . , n} and α := 1 + dlogCe. Then each cj can be represented as a
binary number using α bits. Let bj be this representation. Moreover, let ckj be
the number represented by the k leading bits of bj . That is, ckj :=

∑k
i=1 2k−ibji .

Thus c1j ∈ {0, 1}, cαj = cj , and ck+1
j = bjk+1 + 2ckj for all k = 1, 2, . . . , α − 1 and

j = 1, 2, . . . , n.
Let min{cx : x ∈ X} with X ⊆ Zn+ be an instance of the optimization

problem. We assume that an oracle Unit-Inc is available which with input j,
c+ ej , and an optimal solution x1 w.r.t. c computes an optimal solution x2 for
min{(c+ ej)x : x ∈ X}. We consider the following algorithm.

Algorithm UI

begin
Let x1 be any feasible solution.
set c∗j := 0 for j = 1 to n
for k = 1 to α do

for j = 1 to n do c∗j := 2c∗j
S := {j : bjk = 1}
while S 6= ∅ do

choose j ∈ S
S := S \ {j}
c∗j := c∗j + 1
If x1

j > 0 then
Call Unit-Inc(c∗, x1, x2, j)
x1 := x2

endif
endwhile

endfor
output x1

end

Theorem 2. Let a family of optimization problems with linear objective func-
tions be given by a unit-increment oracle. Then algorithm UI computes an opti-
mal solution in oracle-polynomial time.

Proof. Assume that at the beginning of the k-th iteration of the main loop, x1 is
an optimal solution to min{ck−1x : x ∈ X}. Then x1 continues to be an optimal

6 J.B. Orlin, A.P. Punnen, and A.S. Schulz

solution if we change the objective function to 2ck−1. Thus at the end of the
while loop, the oracle Unit-Inc guarantees that x1 is an optimal solution to
min{ckx : x ∈ X}. The correctness of the algorithm follows by induction over k.

ut

For the assignment problem on a bipartite graph on 2n nodes and m edges,
the general algorithm described above terminates in O(nm logC) time. This
is because the unit increment problem for this special case can be solved in
O(m) time. Although there are special purpose algorithms with better worst
case bounds to solve the assignment problem, it is interesting to note that the
general algorithm UI achieves a good time bound.

Algorithm UI is a generalization of the bit scaling algorithm studied exten-
sively in the network flow literature (see, e.g., [1]). The new feature here is the
use of the unit increment oracle. This allows us to compare the relative difficul-
ties of optimization and unit increment problems and also provides a framework
for our study of ε-optimization and local optimization. Theorem 2 establishes
that an optimization problem with linear objective function can be solved in
polynomial time if and only if the corresponding unit increment problem can be
solved in polynomial time. Alternatively, if the optimization problem is NP-hard
then the corresponding unit increment problem is also NP-hard. Thus the addi-
tional information available for the unit increment problem is not of much help
for NP-hard problems. This provides additional evidence that postoptimality
analysis is typically hard for NP-hard problems (see, e.g., [3,18,13] for related
results).

We now examine the relationship between the unit increment problem and
the augmentation problem. Let x0 be an optimal solution to min{cx : x ∈ X},
and let j be a given index, 1 ≤ j ≤ n.

Lemma 3. If x∗ is an optimal solution to min{(c + ej)x : x ∈ X}, then (c +
ej)(x0 − x∗) ≤ x0

j .

Proof. Since x∗ is a feasible solution to min{cx : x ∈ X}, cx0 ≤ cx∗. Thus
(c+ ej)x0 = cx0 + x0

j ≤ cx∗ + x0
j ≤ (c+ ej)x∗ + x0

j . ut

The next theorem is, in principle, a consequence of the before-mentioned
equivalence between augmentation and optimization for 0/1-integer programs,
and Theorem 2. However, the following proof provides a Karp reduction from
the unit increment problem to the augmentation problem.

Theorem 4. For 0/1-integer programs, the unit increment problem and the aug-
mentation problem are polynomial-time equivalent.

Proof. Assume that X ⊆ {0, 1}n is given by an augmentation oracle. Consider
the instance min{cx : x ∈ X} and its unit increment version min{(c+ ej)x : x ∈
X} together with respective optimal solutions x0 (given) and x∗ (unknown). By
Lemma 3,

(c+ ej)(x0 − x∗) ≤ 1. (1)

Optimization and evaluation are equivalent 7

Since c ∈ Zn, one application of the augmentation oracle starting with x0 either
declares that x0 is optimal for min{(c + ej)x : x ∈ X} or finds an improving
solution which must be optimal for min{(c + ej)x : x ∈ X} in view of (1). The
other direction is implied by Theorem 2. ut

Using Lemma 3 we have the following result for general integer programs. Let
min{cx : x ∈ X} be an instance and x0 be an optimal solution. Let min{(c+ej)x :
x ∈ X} be the corresponding j-th unit increment instance.

Theorem 5. Given x0 ∈ arg min{cx : x ∈ X} and an augmentation oracle,
min{(c+ ej)x : x ∈ X} can be solved by O(x0

j) calls of the augmentation oracle.

Theorems 2 and 5 show that for an integer linear program for which x ≤ u
for all x ∈ X where the components of u are bounded above by a polynomial of
the remaining input data, the optimization problem can be solved in polynomial
time whenever the augmentation problem can be solved in polynomial time.

4 The unit increment problem and ε-optimization

In this section we explore the approximate solvability of optimization problems in
relation to ε-augmentation and ε-unit increment oracles. We need the assumption
that cj ≥ 0 for all j = 1, 2, . . . , n. We also fix ε > 0. Let UI(ε) denote the variation
of the algorithm UI where the oracle Unit-Inc is replaced by ε-Unit-Inc which
takes as input c + ej , an ε-optimal solution x1 of min{cx : x ∈ X}, an index
j, and computes an ε-optimal solution x2 of min{(c + ej)x : x ∈ X}. Using
arguments similar to that in the proof of Theorem 2 one can show the following
result.

Theorem 6. Given an ε-unit increment oracle and an initial feasible solution,
algorithm UI(ε) computes an ε-optimal solution to min{cx : x ∈ X} in oracle-
polynomial time.

Thus if a feasible solution can be computed in polynomial time and the ε-unit
increment problem can be solved in polynomial time, then an ε-optimal solution
can be obtained in polynomial time. Alternatively, an optimization problem is
not approximable if and only if the corresponding unit increment problem is not
approximable. This result is interesting in several ways. For example, even if we
have an ε-optimal solution to the traveling salesman problem, if one of the edge
weights is increased by one, then getting an ε-optimal solution is still NP-hard.
Also, there exists a (fully) polynomial approximation scheme for an optimization
problem if and only if there is a (fully) polynomial approximation scheme for
the unit increment problem.

Interestingly, we can show that the ε-augmentation problem and the ε-unit
increment problem are equivalent for 0/1-integer programs.

Theorem 7. For 0/1-integer programs, the ε-augmentation problem and the ε-
unit increment problem are polynomial-time equivalent.

8 J.B. Orlin, A.P. Punnen, and A.S. Schulz

Proof. Consider an instance min{cx : x ∈ X} with X ⊆ {0, 1}n and its j-th
unit increment instance min{(c + ej)x : x ∈ X}. Let x0 and x∗ be optimal
solutions of the former problem and the latter problem, respectively. Let x1 be
an ε-optimal solution to min{cx : x ∈ X}. If x1 is declared as an ε-optimal
solution to min{(c + ej)x : x ∈ X} by the ε-augmentation oracle, the proof is
over. Thus suppose that starting with the solution x1 to min{(c+ ej)x : x ∈ X}
the ε-augmentation oracle produces an improved solution, say x2. We will show
that x2 is an ε-approximate solution to min{(c+ ej)x : x ∈ X}. By Lemma 3 we
have

(c+ ej)x∗ = cx0 or (c+ ej)x∗ = cx0 + 1. (2)

Since x1 is ε-optimal for min{cx : x ∈ X},

cx1 − cx0

cx0
≤ ε.

Case 1: x1
j = 1. In this case (c + ej)x1 = cx1 + 1. Since x2 is an improved

solution for min{(c + ej)x : x ∈ X} obtained from x1, (c + ej)x2 < (c + ej)x1

and hence
(c+ ej)x2 ≤ cx1.

From (2) we have (c+ ej)x∗ = cx0 or (c+ ej)x∗ = cx0 + 1. If (c+ ej)x∗ = cx0,
then

(c+ ej)x2 − (c+ ej)x∗

(c+ ej)x∗
≤ cx1 − cx0

cx0
≤ ε.

If (c+ ej)x∗ = cx0 + 1, then

(c+ ej)x2 − (c+ ej)x∗

(c+ ej)x∗
≤ cx1 − cx0 − 1

cx0 + 1
≤ cx1 − cx0

cx0
≤ ε.

Case 2: x1
j = 0. In this case (c + ej)x1 = cx1. We will show that x1 is an

ε-optimal solution to min{(c+ ej)x : x ∈ X}. If (c+ ej)x∗ = cx0, then

(c+ ej)x1 − (c+ ej)x∗

(c+ ej)x∗
=
cx1 − cx0

cx0
≤ ε.

If (c+ ej)x∗ = cx0 + 1 then,

(c+ ej)x1 − (c+ ej)x∗

(c+ ej)x∗
=
cx1 − cx0 − 1

cx0 + 1
≤ cx1 − cx0

cx0
≤ ε.

Thus if the ε-augmentation oracle does not declare x1 as ε-optimal, the improved
solution x2 is guaranteed to be ε-optimal for min{(c+ ej)x : x ∈ X}.

The converse of the theorem is straightforward. ut

One consequence of the above theorem is that a 0/1-integer program has a
(fully) polynomial-time approximation scheme if and only of the corresponding
augmentation problem has a (fully) polynomial-time approximation scheme. The
same result was obtained by Orlin et al. using quite different arguments [11].

Optimization and evaluation are equivalent 9

5 The unit increment problem and local optimization

In this section we consider the complexity of computing a locally optimal so-
lution with respect to a given neighborhood function N . Recall that the local
augmentation problem has as input a feasible solution x and an objective func-
tion vector c, and it outputs a solution y ∈ N(x) with cy < cx, unless x is
already a local optimum. The local unit increment problem accepts as input j
and a locally optimal solution x1 with respect to c, and returns a locally optimal
solution x2 with respect to c+ ej .

As in the case of (global) optimization and ε-optimization, we first observe
that if a feasible solution can be obtained in polynomial time and the local unit
increment problem can be solved in polynomial time, then a local optimum can
be computed in polynomial time. To establish this, we simply modify algorithm
UI by replacing the unit increment oracle, Unit-Inc, with a local unit increment
oracle, Local-Unit-Inc. We call the resulting algorithm LUI.

Theorem 8. Given a Local-Unit-Inc oracle, algorithm LUI computes a lo-
cally optimal solution in oracle-polynomial time.

The proof of Theorem 8 is similar to that of Theorem 2. Theorem 8 establishes
that the complexity of finding a local optimum is captured by that of the local
unit increment problem.

Unlike the case of optimization and ε-optimization, we are not able to estab-
lish the equivalence of the local unit increment problem and the local augmen-
tation problem for 0/1-integer programs. In fact, if they are equivalent, then,
by Theorem 8, there is a polynomial-time algorithm for finding a local optimum
for any problem in PLS, including PLS-complete problems. In other words, this
would imply PLS = P. However, the two problems are equivalent if the neigh-
borhood is exact. This follows from Theorem 4. Interestingly, we can show that
this is also true for near-exact neighborhoods. Recall from the introduction that
a neighborhood is called near exact if the objective function value of every local
optimum is worse than that of at most a polynomial number of other feasible
solutions.

Theorem 9. For 0/1-integer programs with near-exact neighborhoods, a polynomial-
time algorithm for local augmentation implies a polynomial-time algorithm for
the local unit increment problem.

Proof. Let x0 be a locally optimal solution with respect to the near-exact neigh-
borhood N and the objective function vector c. As usual, X denotes the set of
feasible solutions.

Since N is near exact, there exists X∗ ⊆ X such that cx0 ≤ cx for all x ∈ X∗
and |X \X∗| ≤ f(n) for some polynomial f . By Lemma 3, (c+ej)(x0−x) ≤ 1 for
all x ∈ X∗. Thus in one augmentation step, starting from x0, we get a solution
which is no worse than any solution in X∗ w.r.t (c + ej). This solution may or
may not be a local optimum with respect to N . But outside X∗ there are only
f(n) solutions and hence the local augmentation oracle cannot be called more
than f(n) more times before reaching a local optimum. ut

10 J.B. Orlin, A.P. Punnen, and A.S. Schulz

Corollary 10. If there exists a near-exact neighborhood for a PLS-complete
problem, then there is a polynomial-time algorithm that finds a local optimum
for all problems in PLS. That is, PLS = P.

However, near-exact neighborhoods are unlikely to exist, at least for the TSP [7].

References

1. Ahuja, R.K., T.L. Magnanti, and J.B. Orlin, Network Flows: Theory, Algorithms,
and Applications, Prentice Hall, 1993.

2. Ausiello, G., P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi, Complexity and Approximation, Springer, 1999.

3. Chakravarti, N. and A.P.M. Wagelmans, Calculation of stability radii for combi-
natorial optimization problems, Operations Research Letters 23 (1998), 1–7.

4. Crescenzi, P. and R. Silvestri, Relative complexity of evaluating the optimum cost
and constructing the optimum for maximization problems, Information Processing
Letters 33 (1990), 221–226.

5. Fabrikant, A., C.H. Papadimitriou, and K. Talwar, The complexity of pure Nash
equilibria, Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting, Chicago, IL, 2004, pp. 604–612.

6. Grötschel, M. and L. Lovász, Combinatorial optimization, Chapter 28 in R.L.
Graham, M.Grötschel, and L. Lovász (eds.): Handbook of Combinatorics, volume
2, Elsevier, 1995, pp. 1541–1597.

7. Gutin, G., A. Yeo, and A. Zverovitch, Exponential neighborhoods and domination
analysis for the TSP, Chapter 6 in G. Gutin and A.P. Punnen (eds.), The Traveling
Salesman Problem and Its Variations, Kluwer, 2002, pp. 223–256.

8. Johnson, D.S., The NP-completeness column: Finding needles in haystacks, ACM
Transactions on Algorithms 3 (2007).

9. Johnson, D.S., C.H. Papadimitriou, and M. Yannakakis, How easy is local search?,
Journal of Computer and System Sciences 37 (1988), 79–100.

10. Krentel, M.W., Structure in locally optimal solutions, in Proceedings of the 30th
Annual Symposium on Foundations of Computer Science, Research Triangle Park,
NC, 1989, 216–221.

11. Orlin, J.B., A.P. Punnen, and A.S. Schulz, Approximate local search in combina-
torial optimization, SIAM Journal on Computing 33 (2004), 1201–1214.

12. Papadimitriou, C.H. and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity, Prentice-Hall, 1982.

13. Ramaswamy, R. and N. Chakravarti, Complexity of determining exact tolerances
for min-sum and min-max combinatorial optimization problems, Working Paper
WPS-247/95, Indian Institute of Management, Calcutta, India, 1995.

14. Schäffer, A.A. and M. Yannakakis, Simple local search problems that are hard to
solve, SIAM Journal on Computing 20 (1991), 56–87.

15. Schrijver, A., Theory of Linear and Integer Programming, Wiley, 1986.
16. Schulz, A.S., On the relative complexity of 15 problems related to 0/1-integer

programming, Chapter 19 in W.J. Cook, L. Lovász, J. Vygen (eds.): Research
Trends in Combinatorial Optimization, Springer, Berlin, 2009, pp. 399–428.

17. Schulz, A.S., R. Weismantel, and G.M. Ziegler, 0/1-integer programming: Opti-
mization and augmentation are equivalent, Lecture Notes in Computer Science
979 (1995), 473–483.

18. van Hoesel, S. and A.P.M. Wagelmans, On the complexity of postoptimality anal-
ysis of 0/1 programs, Discrete Applied Mathematics 91 (1999), 251–263.

