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Abstract. We consider the pair (pi, fi) as a force with two-dimensional
direction vector fi applied at the point pi in the plane. For a given set of
forces we ask for a non-crossing geometric graph on the points pi that has
the following property: There exists a weight assignment to the edges of the
graph, such that for every pi the sum of the weighted edges (seen as vec-
tors) around pi yields −fi. As additional constraint we restrict ourselves to
weights that are non-negative on every edge that is not on the convex hull of
the point set. We show that (under a generic assumption) for any reasonable
set of forces there is exactly one pointed pseudo-triangulation that fulfils
the desired properties. Our results will be obtained by linear programming
duality over the PPT-polytope. For the case where the forces appear only
at convex hull vertices we show that the pseudo-triangulation that resolves
the load can be computed as weighted Delaunay triangulation. Our ob-
servations lead to a new characterization of pointed pseudo-triangulations,
structures that have been proven to be extremely useful in the design and
analysis of efficient geometric algorithms.
As an application, we discuss how to compute the maximal locally convex
function for a polygon whose corners lie on its convex hull.

1 Introduction

Let P = {p1, . . . ,pn} be a set of distinct points in the plane in general position
and let F = {f1, . . . , fn} denote a set of two-dimensional vectors. We think of the
pair (pi, fi) as a force in direction fi that is applied at the point pi. The set of pairs
L = {(p1, f1), . . . , (pn, fn)} is called a load. The objects we study in this paper are
geometric graphs G = (P,E) with point set P and edge set E. An edge of E that
is not part of the convex hull of P is considered as interior edge.

A stress is a (symmetric) assignment of scalars to the edges E. Throughout the
paper we denote a stress of G with ω : P → R. We say that a graph resolves a load
L with stress ω, if

∀pi :
∑

(i,j)∈E

ωij(pi − pj) = −fi. (1)

We can interpret condition (1) as follows: Consider the edges meeting in a point
as vectors; the sum of these vectors (weighted by ω) cancels the vector fi. If there
exists some stress ω for which G resolves the load L we say that G resolves L.
Furthermore, if there exists a stress ω, positive or zero on every interior edge,
we say that G resolves L with positive interior stress. Stressed graphs have a
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physical interpretation. Their edges can be considered as a system of springs. Due
to Hooke’s law the force induced by a spring is proportional to its length. Hence
the values ωij are the spring constants from this point of view. A negative spring
constant models a rubber band—thus by considering only positive interior stresses
we restrict ourselves to (expansive) springs.

In this paper we study the problem how to find a graph that resolves a given
load with positive interior stress. Figure 1(a) shows a small introductory example
of a problem instance. A possible solution with the corresponding stress is depicted
in Figure 1(b).
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Fig. 1. A small example.

Not all loads can be resolved by a graph. In particular, a load has to contribute
neither a linear momentum (that is

∑
i fi = 0) nor an angular momentum (that is∑

i〈fi,p⊥i 〉 = 0). The vector p⊥ := (y,−x)T denotes the rotation of p = (x, y)T by
90 degrees around the origin. To see this, observe the following: Every geometric
graph with fixed stress can resolve exactly one load. If the graph consists of a single
edge (i, j) it can resolve the load given by fi = ωij(pj −pi) and fj = ωij(pi−pj).
We notice that fi and fj sum up to 0 and that 〈fi,p⊥i 〉 + 〈fj ,p⊥j 〉 = 0 holds.
A load resolved by a stressed graph is the composition of these “atomic” forces
induced by single edges. Since the total linear (angular) momentum is the sum of
the linear (angular) momenta of the atomic forces we cannot resolve a load with
non-vanishing linear or angular momentum. In the following we consider only loads
without linear and angular momentum. If we want to emphasize the absence of a
momentum we use the term moment-free for loads.

If a graph can resolve every moment-free load it is called statically rigid. It
is well known that static rigidity is the dual concept to infinitesimal rigidity. In
other words, a graph is statically rigid if and only if it is infinitesimally rigid. This
observation was already noticed by Föppl [14] and Henneberg [16, page 456]. In
2d (generically) minimally rigid graphs can be characterized by a combinatorial
counting argument which was given by Laman [18]. These graphs are called Laman
graphs and are (statically) rigid in almost every realization in the plane. The
question we study in this paper is from a slightly different nature—we look for
graphs that can resolve only a fixed load. On the other hand, we have as additional
constraint that the stress on interior edges has to be non-negative.
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The load given by fi = 0 for all pi is called zero load. A stress that resolves this
load on G is called equilibrium stress for G. Graphs with equilibrium stresses have
several nice properties. An old results that goes back to James Clerk Maxwell states
that the equilibrium stresses of a planar graph are in one-to-one correspondence
with its spatial liftings [21]. Furthermore, the sign of the stress on an edge indicates
the curvature along this edge in the lifting. This observation is known as the
Maxwell-Cremona correspondence.

Considering positive interior stresses only is also motivated by the construc-
tion of a discrete Laplace-Beltrami operator [32]. The Laplace-Beltrami Operator
has applications in surface parameterization [13], symmetry detection [22], mesh
filtering [12], and physical simulation [31], just to mention a few. There exist dif-
ferent versions of the discrete Laplace-Beltrami operator, but none can guarantee
all properties of the continuous equivalent [32]. In particular, a discrete Laplace-
Beltrami operator for a triangulated surface mesh should be modeled by an equi-
librium stress (with every vertex incident to at least one non-zero stress) whenever
the surface lies in the plane. On the other hand the edge weights should be non-
negative to guarantee the maximum principle, which is a natural property for the
classical Laplace-Beltrami operator and which should also hold for the discrete
version [5]. As mentioned in [32], the existence of non-regular triangulations makes
it impossible to construct a “perfect” discrete Laplacian. However, it is open how
to fix this inconvenience by local adjustments to the original mesh. A better un-
derstanding how positive equilibrium stresses behave could lead to a solution for
this problem.

We restrict ourselves to a special class of graphs that might resolve a given
load with a positive interior stress. These are the pointed pseudo-triangulations. A
pseudo-triangulation of P is a partition of the convex hull of P into polygons with
three corners. such that every pi is part of some polygon. A corner is a vertex of
a polygon with interior angle smaller than π. If every point is incident to an angle
greater than π the pseudo-triangulation is called pointed. A pseudo-triangulations
can resolve any moment-free load with positive and negative stresses (Streinu [30]).
Pseudo-triangulations are related to maximal locally convex functions. This rela-
tionship was observed by Aichholzer et al. [2] and was further extended by Auren-
hammer and Krasser [3]. Similar to triangulations pointed pseudo-triangulations
appear as geometric data structures and they are used to prove the correctness
and efficiency of algorithms. They find applications in ray shooting [6], motion
planning [4], and art gallery type problems [29]. This list is far from complete, for
a comprehensive discussion on pseudo-triangulations we direct the reader to the
survey by Rote, Santos and Streinu [26].

The reasons why we focus on pointed pseudo-triangulations are the following.
Since they can resolve loads with general stresses, they seem to be powerful enough.
On the other hand, every vertex which is not pointed is in some sense “over-
constrained” to resolve the force (with positive stresses) at this point, because
the effect of at least one stressed edge can be expressed by adjusting the stresses
on two other edges. Moreover, pseudo-triangulations are non-crossing geometric
graphs and therefore easy to understand for the viewer.

Results: As our main result we show that there exists for every moment-free load
L a pointed pseudo-triangulation that can resolve L with positive interior stress.
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Moreover, up to degenerate situations, this pointed pseudo-triangulation is unique.
We extend these results to a constrained version of the original problem. This
means that even if we restrict a certain set of edges to appear in the solution, we
can find a pointed pseudo-triangulation that contains this set and resolves L with
positive stress on the unconstrained interior edges. This is true for any constraints
that allow the completion to some pointed pseudo-triangulation. As in the original
setting the obtained solution is unique for almost every load. The constrained
and the unconstrained problem can be solved by linear programming. For the
special situation when all forces appear only at convex hull vertices we provide an
algorithm that computes the load resolving pointed pseudo-triangulation without
linear programming.

As application we show how we can compute pointed pseudo-triangulations
that refer to maximal locally convex functions, for polygons whose corners lie
on its convex hull. Our approach combines the load-resolving method with the
Maxwell-Cremona correspondence.

2 Resolving Loads with Pointed Pseudo-Triangulations

2.1 General Solution

Let us start with some preliminary observations about pointed pseudotriangula-
tions. In the following we use pointed pseudo-triangulations of point sets and (later
in Section 3) also of simple polygons.

Definition 1. A pointed pseudo-triangulation of a point set P is the partition of
the convex hull of P into polygons with three corners, such that every vertex in P
is incident to an angle greater than π.
A pointed pseudo-triangulation of a polygon P is the partition of P into polygons
with three corners, such that every vertex of P is incident to an angle greater than
π.

There exists a high-dimensional polytope whose corners correspond to the pointed
pseudo-triangulations a point set can have [25]. This polytope is called PPT-
polytope and it is based on the fact that every pointed pseudo-triangulation has an
expansive infinitesimal motion, if one removes a convex hull edge (see Streinu [30]).
The infinitesimal velocities v1, . . . ,vn (each vi is a two-dimensional vector) act as
unknowns in the description of the polytope:

〈vi − vj ,pi − pj〉 ≥ 〈pi,p⊥j 〉2 ∀i, j ≤ n,
〈vi − vj ,pi − pj〉 = 〈pi,p⊥j 〉2 for (i, j) ∈ conv(P ),

(2)∑n
i=1 vi = 0, (3)∑n

i=1〈vi,p⊥i 〉 = 0. (4)

The PPT-polytope is a simple polytope with dimension 2n− 3. Hence, in each
of its vertices 2n − 3 inequalities are tight (including the equations of the convex
hull edges). The pointed pseudo-triangulation that is associated with a specific
vertex of the PPT-polytope is given by the edges induced by its tight inequalities.
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We study the minimization of the function

n∑
i=1

〈vi,−fi〉 (5)

over the PPT-polytope given by (2–4) (in the following considered as primal pro-
gram). As we will see later our choice of the objective function (5) leads to a
solution that is capable to resolve the load L.

The constraints of the corresponding dual program have the following form:

1 ≤ i ≤ n :
n∑

j=1

uij(pi − pj) + t + rp⊥i = −fi. (6)

The variables t and r correspond to the equations (3) and (4). For every possible
interior edge we obtain by LP duality the dual constraint uij ≥ 0. By complemen-
tary slackness we deduce that if a constraint is not tight in the primal solution
(there is no edge defined by this inequality), then the corresponding dual variable
uij is zero in the dual solution. Thus, a (non-zero) uij appears only on the edges
of the primal solution.

We observe that the dual variables t and r that come from the conditions (3)
and (4) are the only difference between (6) and (1). Fortunately, we can show that
under our assumptions the variables t and r can only be zero.

Lemma 1. If the load in the primal program is moment-free we have for the dual
variables t = 0 and r = 0.

Proof. Equation (6) denotes n restrictions of the dual program. Adding up all these
equations cancels the uij variables and gives

nt + r
( n∑

i=1

pi

)⊥
= −

n∑
i=1

fi. (7)

Because the objective function is moment-free the last equation equals zero. Now,
we take the scalar product of both sides of equation (6) with p⊥i . This gives n
equations of the form

−
n∑

j=1

uij〈p⊥i ,pj〉+ 〈p⊥i , t〉+ r‖pi‖2 = −〈p⊥i , fi〉. (8)

If we sum up all these equations, the uij variables cancel, since 〈p⊥i ,pj〉 = 〈p⊥⊥i ,p⊥j 〉 =
〈−pi,p⊥j 〉 = −〈p⊥j ,pi〉. We obtain

〈( n∑
i=1

pi

)⊥
, t
〉

+ r

n∑
i=1

‖pi‖2 = −
n∑

i=1

〈p⊥i , fi〉. (9)

Again this equation is zero because the objective function is moment-free.
The variables t and r can be computed by solving a homogeneous linear equa-

tion system given by the three equations from (7) and (9). It remains to show that
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t = 0 and r = 0 is the only solution of this system. We can rephrase (7) to express
t as

t = − r
n

( n∑
i=1

pi

)⊥
. (10)

If r = 0 then t = 0 and we get the trivial solution. Therefore, let us assume that
r is nonzero. We plug (10) into equation (9) and obtain

− r
n

〈( n∑
i=1

pi

)⊥
,
( n∑

i=1

pi

)⊥〉
+ r

n∑
i=1

‖pi‖2 = 0.

Further simplifications give

n∑
i=1

‖pi‖2 − 1
n

∥∥∥ n∑
i=1

pi

∥∥∥2

= 0. (11)

Let p̄ := 1
n

∑n
i=1 pi denote the center of gravity of P . We deduce

‖pi‖2 = ‖p̄ + pi − p̄‖2 = ‖p̄‖2 + 2〈p̄,pi − p̄〉+ ‖pi − p̄‖2.

Plugging this equivalence into equation (11) leads to

n∑
i=1

(‖p̄‖2+ 2〈p̄,pi−p̄〉+ ‖pi−p̄‖2)− n‖p̄‖2 = n‖p̄‖2+
n∑

i=1

‖pi − p̄‖2 − n‖p̄‖2,

=
n∑

i=1

‖pi − p̄‖2.

We observe that the last expression is strictly positive as long as not all pi are the
same, which is not allowed in our case. Hence, t = 0 and r = 0 is the only solution
of the homogeneous system and the lemma follows. ut

As consequence of Lemma 1 the dual variables uij define a stress that resolves
the load L and is positive on every interior edge. Hence, the solution of the primal
program computes a graph with the desired properties. Notice that almost every
objective function has a unique solution, and thus there is for almost every load
exactly one pointed pseudo-triangulation that resolves it with positive interior
stress.

Theorem 1 (Main Theorem). For every moment-free load L there exists a
pointed pseudo-triangulation that resolves L with positive interior stress. Up to
degenerate situations this pointed pseudo-triangulation is unique and it is the so-
lution of the linear program (2–5).

Algorithmically, the computation of the desired pointed pseudo-triangulation
boils down to solving a linear program with 2n variables, whose length is in O(n2).
Various methods and tools are applicable to solve LP programs. The interior point
method of Karmarkar [17] runs in O(n3.5K), where K is the number of input bits.
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2.2 The Constrained Problem

We are looking now for a pointed pseudo-triangulation that resolves a load L with
positive interior stress and that contains a prescribed set of edges Ec. Notice that
a set of non-crossing edges that leaves an angle greater than π at every vertex can
always be completed to a pointed pseudo-triangulation [30]. Let us assume that
Ec allows the completion to a pointed pseudo-triangulation on P .

The solution in this constrained setting can be computed with the same method
we used for the general case. Again, we use a linear program to compute the
pointed pseudo-triangulation. But this time we optimize only over a facet of the
PPT-polytope. This facet can be obtained by turning all inequalities of (2) that
refer to edges in Ec into equations:

〈vi − vj ,pi − pj〉 = 〈pi,p⊥j 〉2, for (i, j) ∈ Ec. (12)

The facet of the PPT-polytope is simple and, more important, it is not empty.
Forcing edges to appear in the graph has the following consequences for our LP

approach: The inequalities of Ec are now equations. Thus, we have no information
about the sign of the corresponding dual variables uij anymore. On the other
hand the dual restrictions (6) are not affected. We have still uij ≥ 0 for every uij

that does not refer to an edge in Ec. Notice that Lemma 1 can be applied in this
constrained setting without modifications. As a consequence we can deduce:

Theorem 2. Let L = P × F be a moment free load and Ec be a set of edges
that allows the completion to a pointed pseudo-triangulation on P . There exists a
pointed pseudo-triangulation that contains Ec and resolves L with a stress that is
positive on every interior edge that is not in Ec. Up to degenerate situations this
pointed pseudo-triangulation is unique and it is the solution of the linear program
given by (2–5) and (12).

2.3 No Interior Forces

Let us assume for this section that fi = 0 for every vertex that is not on the
convex hull of P . Under this assumption, we can find the pseudo-triangulation
that resolves L by geometric methods, without solving a linear program. If we
have no edge constraints, all interior points can simply be ignored: in this setting,
we are looking for a triangulation that resolves forces whose points of application
are in convex position.

Let us assume that the facial structure of a planar graph G is given by some
combinatorial embedding (a planar map), and in addition, the vertices of G are
drawn in the plane and the edges are realized as straight lines (a geometric graph).
Note that the drawing in the plane can have crossings, and is not necessarily related
to the facial structure. A height assignment h : P → R is a lifting of a graph if
all vertices that belong to a face lie on a common plane in R3 when giving pi

the additional coordinate zi = h(pi). The relation between liftings of a planar
graph that is drawn as a geometric graph in the plane and its equilibrium stresses
is expressed by the Maxwell-Cremona correspondence, which goes back to James
Clerk Maxwell [21].
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Theorem 3 (Maxwell-Cremona correspondence). For a planar 2-connect-
ed graph G drawn in the plane, with a designated face f̂ , there is a one-to-one
correspondence between

1. the liftings of G with f̂ in the xy-plane, and
2. the equilibrium stresses on G.

When we apply this theorem in this paper, the lifted surface is usually a polyhedral
surface that consists of an “upper surface” and a “lower surface” that are glued
together at their common boundary. Each part, when individually projected to
the plane, will yield a planar drawing without crossings, but the overlay of the two
parts will in general have crossings. It is possible that the lower and the upper
surface intersect each other; this is no problem. When G, or a part of G, is drawn
without crossings and the faces of G are the faces of this drawing, an edge with a
positive stress lifts to a convex edge and an edge with a negative stress a concave
edge.

The complete proof of the Maxwell-Cremona correspondence is due to White-
ley [33] (see also [11]). A more constructive proof is due to Richter-Gebert [24].
The Maxwell-Cremona correspondence finds application in polygon unfolding [9]
and grid embeddings of 3-polytopes [23]. Once we have a equilibrium stress, the
computation of the lifting is easy and can be computed face by face, starting with
f̂ . For the detailed rules how to compute the lifting we refer to Richter-Gebert’s
book [24].

We first discuss the unconstrained load resolving problem. We look for a graph
that resolves LC := {(pi, fi) | pi lies on the convex hull}. But this time negative
stresses on interior edges are allowed. It is known that every triangulation can
resolve LC since it is a so called Laman graph and hence statically rigid [14]. Let
us pick an arbitrary triangulation T of the convex hull. We compute the stress
that resolves LC on T and multiply all stresses by −1. This gives a stressed graph
that “produces” the load LC . The stressed triangulation T combined with the
triangulation T ′ that resolves LC with positive interior stresses yields a planar
graph with equilibrium stress. Thus, by Maxwell-Cremona there is a lifting of this
composition. From this lifting we know the heights of the lifted points, because
every point lies on a face of T and we can compute the lifting partially for the faces
of T , when we choose f̂ as face of T . Since the interior edges of T ′ are restricted
to have a positive stress their curvature in the lifting of T ∪ T ′ yields a convex
bending. Therefore, the combinatorial structure of T ′ coincides with the weighted
Delaunay triangulation of conv(P ). The Delaunay-weights are given by ‖pi‖2 − zi

for every convex hull vertex pi. The weighted Delaunay triangulation for convex
point sets can be computed in linear time [1].

The stresses of T can be computed with help of an ear decomposition of T .
Let pc be the corner of an ear of T . The force (pc, fc) can be canceled by the two
boundary edges of pc by a unique stress which can be easily computed. We can
update the forces assigned to the neighbors of pc by subtracting the vector induced
by the (newly) stressed edges incident to pc. Now we can eliminate the ear and
continue the ear decomposition in this fashion until we reduced T to a triangle.
Notice that by updating the neighboring forces we deal with a moment-free load
in every step of the ear decomposition. Thus for the final triangle we have three
moment-free forces which can be canceled. The stresses of the final triangle can
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be computed by a small linear system. Since the ear decomposition clearly runs
in linear time we can compute the triangulation that resolves LC with positive
interior stresses in linear time.

For the constrained setting we can use the same ideas. More precisely, we fix
again an arbitrary triangulation T and compute again a stress that resolves L on
T . The heights of the associated lifting can be computed by the Maxwell-Cremona
correspondence. The pointed pseudo-triangulation that resolves LC is characterized
by the polyhedral surface that is convex on every line segment inside conv(P ) that
doesn’t cross a constraint edge. Aichholzer et al. [2] give an algorithm (not based
on linear programming) that computes this polyhedral surface. Unfortunately, no
practical bounds for the running time of this algorithm are known.

3 Computing Optimal Pointed Pseudo-Triangulations of
Polygons

Let P be a polygon with vertex set P = {p1, . . . ,pn} and let Pc denote the set of
corners of P. Furthermore, let h : Pc → R be a height assignment for the corners of
P. We study the maximal function f∗ : P → R that is convex on every line inside P
and that fulfills h(pi) = f∗(pi) for all corners pi ∈ Pc. It was proven by Aichholzer
et al. [2] that f∗ describes a piecewise linear surface, whose non-linearities project
down to a pointed pseudo-triangulation PT h. The framework of [2] is more general
and covers also polygons with additional points inside. It can also be used to define
optimal non-pointed pseudo-triangulations.

We can compute PT h (or f∗) by (i) picking an arbitrary pseudo-triangulation
of P and then (ii) applying a sequence of local adjustments which are called flips.
A flip is a transformation of a pseudo-triangulation that exchanges, inserts or
removes a single edge and produces a new pseudo-triangulation. There exists a
criterion which tells us whether a flip brings us “closer” to PT h or not. Thus,
we can compute PT h by a sequence of such (improving) flips. As a result of
[2, Optimality Theorem] we know that the sequence is finite and terminates at
PT h. For a polygon, an improving sequence can have super-polynomial length [28]
but we can always find a short sequence of O(n2) flips [2, Lemma 7.3]. During
the flipping process we must keep track of the heights on all vertices of P \ PC .
Only this information allows us to decide if a flip is improving. It was noticed in
[15, page 55] that the recomputation of the heights can be expressed by a linear
equation system that is based on a planar structure. As mentioned in [7], the
Planar Separator Theorem provides a solution in O(M(

√
n)) time in this case,

where M(n) is the upper bound for multiplying two n × n matrices [19, 20]. The
current record for M(n) is O(n2.325), which is due Coppersmith and Winograd [10].
Thus, a flip can be carried out in O(n1.163) time, and the whole algorithm takes
O(n3.163) time.

We give an alternative algorithm how to compute PT h for polygons whose
corners lie on its convex hull. Our approach uses a completely new technique and
is based on the observations of the Maxwell-Cremona correspondence, introduced
in the previous section. Here, in contrast to the previous section, we use a linear
programming approach to solve a geometric problem.

We first give a high-level description of our method. We construct a polyhedron
that consists of two shells. Roughly speaking, the upper shell is the (unknown)
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surface given by f∗—the lower shell is a cone with apex at the origin that spans
the lifted corners of the polygon. To glue the two shells together, we have to extend
f∗ to the set conv(P )\P (the pockets of P). Due to Maxwell-Cremona, the vertical
projection of the polyhedron has an equilibrium stress, with positive stressed edges
on the interior edges of P. Each shell alone produces a moment-free load that shows
up on the convex hull vertices. Since we know the height and the position of the
convex hull vertices we know the geometric shape of the lower shell. Hence, we can
compute all of its (interior) stresses and therefore the induced moment-free load.
The graph that resolves this load with positive interior stresses gives PT h with
triangulated pockets. Of course we have to enforce the boundary edges of P to
appear in our solution, which can be done by solving the constrained problem as
discussed in Section 2.2.

We continue with the detailed construction. Let [i, j, k, l] denote the signed
volume of the tetrahedron spanned by the lifted vertices pi,pj ,pk,pl and let [i, j, k]
be the signed area of the triangle spanned by the (plane) vertices pi,pj ,pk. We
introduce a new vertex p0 = (0, 0)T as the apex of the lower shell. As observed in
[8, 28], the corresponding stresses on every edge connecting p0 to a corner pi can
be expressed as

ω0i :=
[0, h, i, j]

[0, h, i][0, i, j]
,

where ph is the left neighbor, and pj is the right neighbor of pi on the convex hull
of P . By construction, the stressed edges incident to p0 sum up to 0. For every
corner pi we obtain a vector fi := ω0i(pi−p0) = ω0ipi. We use the boundary edges
of P as constraints and compute the pointed pseudo-triangulation that resolves the
forces fi.

(a) (b) (c)

Fig. 2. A polygon (a), the induced forces that will yield the lifting to the paraboloid (b),
and the corresponding pointed Delaunay pseudo-triangulation (c).

We conclude with an example of our method. Figure 2(a) shows a polygon
whose corners lie on its convex hull. As height assignment we choose the paraboloid
lifting h(pi) := ‖pi‖2—this lifting gives the pointed Delaunay pseudo-triangulation
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of P (see [27]). The induced lower shell is shown in Figure 3(a) and its induced
forces are shown in Figure 2(b). The surface that “fits” into the lower shell and
that fulfills all the requirements is depicted in Figure 3(b). It gives the pointed
pseudo-triangulation PT h of Figure 2(c).

(a) (b)

Fig. 3. Construction of a polyhedron whose upper shell gives f∗.

Our method extends the result presented in [27] because it allows the compu-
tations for a wider class of polygons. The question how to solve the general case
with the load resolving method is still open but not out of reach. One has to find a
way how to fix the values of the stresses of the edges appearing at the pockets of P
to specify the heights of the corners that are not part of conv(P ). Our algorithm is
slower than the execution of the improving flip sequence of [2]. On the other hand
our method allows a very simple implementation with the help of an LP-solver.

References

1. A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A linear-time algorithm for
computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom.,
4(6):591–604, 1989.

2. O. Aichholzer, F. Aurenhammer, P. Brass, and H. Krasser. Pseudo-triangulations
from surfaces and a novel type of edge flip. SIAM Journal on Computing, 32:1621–
1653, 2003.

3. F. Aurenhammer and H. Krasser. Pseudo-simplicial complexes from maximal locally
convex functions. Discrete & Computational Geometry, 35(2):201–221, 2006.

4. J. Basch, J. Erickson, L. J. Guibas, J. Hershberger, and L. Zhang. Kinetic collision
detection between two simple polygons. Comput. Geom., 27(3):211–235, 2004.

5. A. I. Bobenko and B. Springborn. A discrete Laplace-Beltrami operator for simplicial
surfaces. Discrete & Computational Geometry, 38(4):740–756, 2007.

6. B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, J. Hershberger, M. Sharir, and
J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica,
12:54–68, 1994.

7. M. Chrobak, M. T. Goodrich, and R. Tamassia. Convex drawings of graphs in two
and three dimensions (preliminary version). In Proc. 12th Ann. Symposium on Com-
putational Geometry, pages 319–328, 1996.



12 Günter Rote and André Schulz
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