
Bit-Parallel Tree Pattern Matching Algorithms
for Unordered Labeled Trees ?

Hiroaki Yamamoto1 and Daichi Takenouchi2

1 Department of Information Engineering, Shinshu University,
4-17-1 Wakasato, Nagano-shi, 380-8553 Japan.

yamamoto@cs.shinshu-u.ac.jp
2 NTT Advanced Technology Corporation

Abstract. The following tree pattern matching problem is considered:
Given two unordered labeled trees P and T , find all occurrences of P in
T . Here P and T are called a pattern tree and a target tree, respectively.
We first introduce a new problem called the pseudo-tree pattern match-
ing problem. Then we show two efficient bit-parallel algorithms for the
pseudo-tree pattern matching problem. One runs in O(LP ·n·l·d h

W
e) time

and O(n · l ·d h
W

e) space, and another one runs in O((LP ·n+h ·2l) ·dh·l
W

e)
time and O((n+h ·2l) ·dh·l

W
e) space, where n is the number of nodes in T ,

h and l are the height of P and the number of leaves of P , respectively,
and W is the length of a computer-word. The parameter LP , called a re-
cursive level of P , is defined to be the number of occurrences of the same
label on a path from the root to a leaf. Hence we have LP ≤ h. Finally,
we give an algorithm to extract all occurrences from pseud-occurrences
in O(n · LP · l3/2) time and O(n · LP · l) space.

1 Introduction

In recent years, XML has been recognized as a common data format for data
storages and exchanging data over the Internet, and has been widely spread.
The tree pattern matching problem is a central part of XML query problems.
In addition, this problem has a number of applications in the fields of computer
science. Therefore, many researches have been done on developing an efficient
tree pattern matching algorithm. The tree pattern matching problem is as fol-
lows: Given two labeled trees P and T , find all occurrences of P in T . Here P
and T are called a pattern tree and a target tree, respectively. For this problem,
ordered trees and unordered trees have been considered. An ordered tree is a
tree such that the left-to-right order among siblings is significant. Hence, the
order must usually be preserved in the tree pattern matching problem. On the
other hand, an unordered tree is a tree such that any order among siblings is
not defined, and hence the order is not significant in the tree pattern matching
problem.

? This research was supported by the Ministry of Education, Sports, Culture, Science
and Technology, Grant-in-Aid for Scientific Research (C).

For ordered trees, the tree pattern matching problem under the matching
condition preserving parent-child relationship and the position of a child has
been studied. The obvious algorithm runs in O(n · m) time, where n and m are
the number of nodes of a target tree and a pattern tree, respectively. Hoffman and
Donnell [7] proposed several algorithms. Dubiner, Galil and Magen [5] improved
O(n ·m) time and presented an O(n ·

√
m ·polylog(m)) time algorithm. Cole and

Hariharan [3, 4] presented O(n log2 m) time tree pattern matching algorithm
by introducing a subset matching problem. Chauve [2] consider a more general
matching condition, and has given an O(n · l) time algorithm, where l is the
number of leaves of a pattern tree.

Several researches on unordered trees have also been done. Kilpeläinen and
Mannila [9] studied the tree inclusion problem, which can be regarded as the
unordered tree pattern matching problem with an ancestor-descendant relation-
ship. They presented O(n · m) time algorithm for ordered trees and showed
NP-completeness for unordered trees. Shamir and Tsur [11] gave an O(n · m3/2

log m)
time algorithm to solve the subtree isomorphism problem, in which unrooted
and unlabeled trees are considered. This algorithm can solve the unordered tree
pattern matching problem with a parent-child relationship. Furthermore several
researches on XML query problems have been done (for example, see [6, 12, 13])
because the order among siblings is not significant in many practical applications
for querying XML.

In this paper, we are concerned with a tree pattern matching problem on
unordered labeled trees. We here introduce two new notions of a pseudo-tree
pattern matching problem and the recursive level of a labeled tree. A pseudo-
tree pattern matching problem is defined by allowing a many-to-one mapping
from nodes of P to nodes of T . Note that tree pattern matching problems are
normally defined based on a one-to-one mapping. Then the pseudo-tree pattern
matching problem is to find out all pseud-occurrences of P in T . Götz, Koch
and Martens [6] have studied on the tree homeomorphism problem for searching
XML data. This problem can be regarded as a pseudo-tree pattern matching
problem with ancestor-descendant relationship. They gave an O(n · m · h) time
algorithm. The recursive level of a labeled tree is defined to be the maximum
number of occurrences of the same label over a path from the root to a leaf. In
XML applications, a labeled tree with the recursive level 1, called a non-recursive
labeled tree, is well studied (for example see [6, 12]). We present two efficient
bit-parallel algorithms for solving the pseudo-tree pattern matching problem as
follows. Here h and l are the height and the number of leaves of P , respectively,
and W is the length of a computer-word, and LP is the recursive level of P . Our
algorithms make use of the Shift-OR technique which has been developed on the
string matching problem [1].

– One algorithm runs in O(LP · n · l · d h
W e) time and O(n · l · d h

W e) space.
– Another one runs in O((LP ·n+h·2l)·dh·l

W e) time and O((n+h·2l)·dh·l
W e) space.

This algorithm consists of two parts a preprocessing part and a matching part.
The preprocessing part, which generates bit-masks from a pattern tree P ,
takes O(h ·2l · dh·l

W e) time and the matching part takes O(LP ·n · dh·l
W e) time.

a

b b

d c c

Pattern tree P

a

a a

b b b

Target tree T

b

c d c c d d c c

Fig. 1. A pseud-occurrence and an occurrence. The dotted arrow indicates a pseud-
occurrence and the solid arrow indicates an occurrence (an exact occurrence).

In general, W is defined as W = O(log n) on conventional computing models.
Hence, if h is at most log n, then the first algorithm runs in O(LP ·n · l) time, and
if h · l is at most log n, then the second algorithm runs in O(LP · n) time. This
time, if LP = O(1), then the second algorithm solves the pseudo-tree pattern
matching problem in O(n) time. Thus our algorithms run faster for pattern trees
with small size.

Finally we give an algorithm to extract occurrences from pseud-occurrences
for the tree pattern matching problem. If there are not any nodes with the
same label among siblings in P , then a pseud-occurrence of P is identical to
an occurrence of P , and hence the bit-parallel algorithms for the pseudo-tree
pattern matching problem solve the tree pattern matching problem. If there are
nodes with the same label among siblings in P , then a pseud-occurrence does
not always become an occurrence. For this case, we can show an algorithm to
obtain all occurrences of P from pseud-occurrences using an algorithm finding a
maximum matching on bipartite graphs. Our algorithm runs in O(n · LP · l3/2)
time and O(n · LP · l) space.

2 Tree Pattern Matching Problem and Related
Definitions

Let Σ be an alphabet. Then we concentrate on a labeled tree such that each
node of the tree is labeled by a symbol of Σ. Let T a labeled tree. For any node
v of T , the children of node v are siblings of each other. If the order among
siblings is significant, then the tree is said to be ordered; otherwise it is said to
be unordered. The height of T is defined as follows. The depth of the root is
defined to be 1. For any node v of T , the depth of v is defined to be the depth
of the parent plus 1. Then the height of T is defined to be the maximum depth
over all nodes of T . We introduce a notion of a recursive level of T . For any
node v of T , the recursive level of v is defined to be the number of occurrences
of the same symbol as v over the path from the root to v. The recursive level of
T is defined to be the maximum recursive level over all nodes of T . In addition,
for any σ ∈ Σ, we define the recursive level of σ to be the maximum recursive

level over all nodes with label σ. We use two orders when traversing over the
nodes of T . One is preorder, which is recursively defined as follows: First the root
of T is visited. Let T1, . . . , Tt be subtrees rooted by children of the root in the
left-to-right order. Then each Tj is visited in the order from T1 to Tt. Another
one is postorder, in which the leftmost leaf is first visited, and then each node is
visited after having visited all the children of the node.

Let P and T be unordered labeled trees, which are called a pattern tree and
a target tree, respectively. We first define a notion of pseud-occurrence of P in
T and a pseudo-tree pattern matching problem.

Definition 1 (a pseud-occurrence). We say that P nearly matches T at a
node d of T if there is a mapping φ from nodes of P into nodes of T such that

1. the root of P is mapped to d,
2. for any node u of P , there is a node φ(u) of T such that the label of u is

equal to the label of φ(u),
3. for any nodes u, v of P , u is the parent of v if and only if φ(u) is the parent

of φ(v).

We say that d is a pseud-occurrence of P in T .

We give an example of a pseud-occurrence in Fig.1. Note that two nodes
with label b of P are mapped to one node of T , that is, the right-hand child of
a node a. Thus, in the definition of a pseud-occurrence, a mapping φ is allowed
to be many-to-one. The pseudo-tree pattern matching problem is to find out all
pseud-occurrences of P in T . Next we define a tree pattern matching problem,
which is defined based on a one-to-one mapping.

Definition 2 (an occurrence). We say that P matches T at a node d of T if
there is a one-to-one mapping φ from nodes of P into nodes of T such that

1. it satisfies three conditions of the pseud-occurrence,
2. for any nodes u, v of P , if u 6= v, then φ(u) 6= φ(v).

We say that d is an occurrence (or an exact occurrence) of P in T .

We give an example of an occurrence in Fig.1. Note that the mapping φ
is required to be a one-to-one mapping. The tree pattern matching problem is
to find out all occurrences of P in T . It is clear from the definitions that a
pseud-occurrence implies an occurrence, but the reverse does not always hold.
In this paper, we first discuss the pseudo-tree pattern matching problem and
then discuss the tree pattern matching problem.

3 Algorithms for the Pseudo-Tree Pattern Matching
Problem

In this section, we give a bit-parallel algorithm to find all pseud-occurrences
of a pattern tree P in a target T . We make use of a Shift-OR technique on a

a

b b

c d c

a

b

c

a

b

d

a

b

c

Pattern tree P

P1 P2 P3

u1

u2 u3

Fig. 2. Decomposition of a pattern tree P into path patterns P1, P2 and P3

a

b

c d

 P

a

b b

d c

T

a

b b

d c

P

a

b

c d

 T(1) (2)

Fig. 3. two problems in BasicTreeMatch

string matching problem, which was developed by Baeza-Yates and Gonnet [1].
Let Pi be the string consisting of labels on a path from the root to a leaf in P .
Then we call Pi a path pattern and denote by |Pi| the length of path pattern
Pi. We decompose P into path patterns for the Shift-OR technique. If P has l
leaves, then P is decomposed into l path patterns P1, . . . , Pl. We say a node v
of P appears on a path pattern Pi when the label of v appears on Pi. Fig. 2
illustrates an example of path patterns in which P is decomposed into three path
patterns P1 = abc, P2 = abd and P3 = abc. We say that a path pattern occurs at
a node d of T if the path pattern becomes just a prefix of the string consisting
of labels on the path from node d to a leaf.

3.1 Bit-Masks for Path Patterns

To make use of the Shift-OR technique, we generate a bit-mask B[Pi, σ] of h
bits for every path pattern Pi = pi

1 · · · pi
|Pi| and symbol σ, where h is the height

of P . The value of B[Pi, σ] is defined to be a bit sequence b1 · · · bh (bi ∈ {0, 1})
such that for j ≤ |Pi|, bj = 0 if and only if pi

j = σ, and for |Pi| + 1 ≤ j ≤ h,
bj = 0. For instance, bit-masks for three path patterns P1, P2, P3 in Fig. 2 are
defined as follows: B[P1, a] = 011, B[P2, a] = 011, B[P3, a] = 011, B[P1, b] = 101,
B[P2, b] = 101, B[P3, b] = 101, B[P1, c] = 110, B[P2, c] = 111, B[P3, c] = 110,
B[P1, d] = 111, B[P2, d] = 110, B[P3, d] = 111.

3.2 A Basic Algorithm

In this section, we give a simple algorithm BasicTreeMatch(P, T) using the Shift-
OR technique, which is given in Fig. 4. This algorithm finds all nodes in a target

Algorithm BasicTreeMatch(P , T)

Step 0. /* Initialization */
1. set bit-masks B[Pi, c],

2. for all path patterns Pi, set the initial matching state IM [Pi] to 1|Pi|0h−|Pi|.

Visit each node d of T in postorder and do the following for d.

Step 1. /* This step computes the matching state M [Pi, d] of d from matching states of the children.
Let d1, . . . , dt be children of d. If d is a leaf, then we use IM [Pi] instead. */

For all path pattern Pi,
1. if d a leaf, then M [Pi, d] := IM [Pi];

otherwise M [Pi, d] := M [Pi, d1]& · · ·&M [Pi, dt],
2. M [Pi, d] := (M [Pi, d] << 1) | B[Pi, σ].

Step 2. /* This step determines whether all path patterns occur. */
1. Temp := M [P1, d] | · · · | M [Pl, d],
2. the first bit of Temp, that is, the bit corresponding to the root of P , is 0, then return d.

Fig. 4. The algorithm BasicTreeMatch

tree T at which all path patterns of a pattern tree P occurs. We use an array
M [Pi, d] of bit-sequences, called a matching state, whose element is an h-bit
sequence b1 · · · bh. While traversing over nodes of T in postorder, we compute
M [Pi, d] for each node d of T . Let Pi = pi

1 · · · pi
|Pi|. This time, for any node d

of T , M [Pi, d] = b1 · · · bh satisfies that for any j ≤ |Pi|, bj = 0 if and only if
pi

j · · · pi
|Pi| occurs at node d. M [Pi, d] is initially set to 1|Pi|0h−|Pi|. The operation

M [Pi, d] << 1 used in the algorithm denotes a shift operation which shifts a
bit-sequence in M [Pi, d] one bit to the left and sets the rightmost bit to 0. In
addition, the operator “|” denotes a bitwise OR, and the operator “&” denotes
a bitwise AND. BasicTreeMatch decomposes a pattern tree P into path patterns
P1, . . . , Pl, and searches for a node of T at which all path patterns occur by
traversing over T in postorder. The following proposition holds.

Proposition 1. Let d be a node of T returned by BasicTreeMatch. Then all
path patterns of P occur at the node d.

The algorithm BasicTreeMatch completely cannot solve the tree pattern
matching problem. That is, there are the following two problems: (1) one is
that one node of P may be mapped to two or more nodes of T (see (1) in Fig.3);
(2) another one is that two or more nodes of P may be mapped to one node of T
(see (2) in Fig.3). BasicTreeMatch regards these cases as a match. The first case
can be solved by introducing a notion of synchronization in a matching stage.
Hence the pseudo-tree pattern matching problem can be solved. We will show
this in the rest of this section. The second case will be discussed in Section 5.

3.3 A Pseudo-Tree Pattern Matching Algorithm

BasicTreeMatch regards two cases in Fig.3 as a match. In this section, we give
a bit-parallel algorithm which does not regard the case (1) as a match. In (1) of
Fig.3, a node b of P is mapped to two nodes with b of T . Thus two path patterns

Algorithm PseudoTreeMatch(P , T)

Step 0. /* Initialization */
1. set bit-masks B[Pi, c],

2. for all path patterns Pi, set the initial matching state IM [Pi] to 1|Pi|0h−|Pi|,
3. for all path patterns Pi and all nodes u of P , set a synchronization bit-mask Syn[Pi, u],
4. for all nodes u of P , set Pu = {Pi1 , . . . , Pie} such that a path pattern Pij

is in Pu if and

only if u appears on Pij
.

Visit each node d of T in postorder and compute the matching state M [P1, d], . . . , M [Pl, d] for d.
Here the label of d is σ.

Step 1. /* This step computes the matching state of d from matching states of the children. Let
d1, . . . , dt be children of d. If d is a leaf, then we use IM [Pi] instead. */

For all path pattern Pi,
1. if d a leaf, then M [Pi, d] := IM [Pi];

otherwise M [Pi, d] := M [Pi, d1]& · · ·&M [Pi, dt],
2. M [Pi, d] := (M [Pi, d] << 1) | B[Pi, σ].

Step 2. /* Synchronization between path patterns */
For lev = 1, . . . , Lσ , /* Lσ denotes the recursive level of symbol σ.*/

for all nodes u other than the root of P such that it has σ and the recursive level lev
1. for Pi ∈ Pu, SYN [Pi] := M [Pi, d] & Syn[Pi, u],
2. SynMask := SYN [Pi1] | · · · | SYN [Pie], where Pu = {Pi1 , . . . , Pie},
3. for Pi ∈ Pu, M [Pi, d] := M [Pi, d] | SynMask .

Step 3. /* This step determines whether a pseud-occurrence occurs.*/
1. Temp := M [P1, d] | · · · | M [Pl, d],
2. the first bit of Temp, that is, the bit corresponding to the root of P , is 0, then return d

as a pseud-occurrence.

Fig. 5. The algorithm PseudoTreeMatch

bd and bc are separated in T , and hence this does not satisfy the condition of the
pseud-occurrence. Therefore, by solving the case (1), we can solve the pseudo-
tree pattern matching problem. Our algorithm checks whether bd and bc occur
at the same node in T , and if they occur at the same node, then the algorithm
regards them as a match; otherwise does not so.

For this purpose, we introduce a new bit-mask called a synchronization bit-
mask for any node and path pattern of P . Let u be any node of P with the height
h. Then, for any path pattern Pi, a synchronization mask Syn[Pi, u] = b1 · · · bh

is defined as follows: for any 1 ≤ j ≤ h, if the node corresponding to bj is
just u, then bj = 1; otherwise bj = 0. Thus, in Syn[P1, u], . . . ,Syn[Pl, u], only
the bits corresponding to the node u are set to 1; the other bits are set to
0. For instance, we show synchronization bit-masks for the pattern tree given
in Fig. 2. For nodes u1, u2 and u3, we have the following: Syn[P1, u1] = 100,
Syn[P2, u1] = 100, Syn[P3, u1] = 100, and Syn[P1, u2] = 010, Syn[P2, u2] = 000,
Syn[P3, u2] = 000, and Syn[P1, u3] = 000, Syn[P2, u3] = 010, Syn[P3, u3] = 010.

The algorithm PseudoTreeMatch in given Fig. 5 is constructed by adding the
synchronization stage of Step 2 to BasicTreeMatch; it can find out all pseud-
occurrences of P in T . From Proposition 1, we know that BasicTreeMatch finds
out all nodes in T at which all path patterns occur. We explain how Step 2
works. Let u be a node of P and the depth is j. Then, for any Pi and any node
d of T , the j-th bit bj of M [Pi, d] corresponds to u. Step 2 checks out the bit bj

of M [Pi, d] for all Pi ∈ Pu, and if the bit bj of at least one M [Pi, d] is 1, then

M[P1,d] M[P2,d] M[Pl,d].

Fig. 6. A packed matching state M [d]

B[a]

B[b]

B[c]

B[d]

011 011 011

101 101 101

111

110 111 111

110 110

Fig. 7. Packed bit-masks of Fig.2

the bits bj of all M [Pi, d] are set to 1. To do this, we first check out the value
of bj in (a) of Step 2 using Syn[Pi, u]. If bj of M [Pi, d] is 1, then the j-th bit of
SYN [Pi] becomes 1. Hence if there is at least one SYN [Pi] such that the j-th
bit is 1, then the j-th bit of SynMask becomes 1 in (b) of Step 2. Finally, in this
case, for all Pi ∈ Pu, the j-bit bj of M [Pi, d] is set to 1 in (c) of Step 2. We have
the following theorem.

Theorem 1. The algorithm PseudoTreeMatch finds all pseud-occurrences of P
in O(LP · n · l · d h

W e) time and O(n · l · d h
W e) space, where n is the number of

nodes of T , LP , h, and l are the recursive level, the height, and the number of
leaves of P , respectively, and W is the length of a computer-word.

3.4 Improving the Algorithm by Packing Bit-Sequences

Let n be the number of nodes of T , and let l and h be the number of leaves
and height of P , respectively. The algorithm PseudoTreeMatch is checking a
matching on each path pattern. Therefore it requires at least n × l time be-
cause there are l path patterns. In this section, we improve this matching pro-
cess by packing path patterns into computer-words. This allows us to carry out
matching processes on path patterns simultaneously. We give the improved algo-
rithm FastPseudoTreeMatch in Fig. 8. In the algorithm, we pack matching states
M [P1, d], . . ., M [Pl, d] into one word M [d] as in Fig. 6 (if the packed bit-sequence
is long, then multiple words are used). We denote by (M [P1, d], . . . ,M [Pl, d])
such a packed bit-sequence M [d]. Similarly, we also pack B[P1, σ], . . . , B[Pl, σ]
into B[σ] = (B[P1, σ], . . . , B[Pl, σ]) for each symbol σ as in Fig. 7. By these
packing, we can simultaneously compute the matching state of each node in
Step 1. Let hi = |Pi|. We here use an hi-bit sequence for bit-sequences such
as M [Pi, d] and B[Pi, σ] to make as compact a packed bit-sequence as possi-
ble. In addition, we would like to carry out the synchronization task of Step 2
in PseudoTreeMatch simultaneously. To do this, we pack synchronization bit-
masks into PSyn[σ, lev] as follows, where σ is a symbol and lev is a recursive

Algorithm FastPseudoTreeMatch(P , T)

Step 0. /* Initialization */
1. compute bit-masks B[Pi, σ], and set B[c] := (B[P1, σ], . . . , B[Pl, σ]) for each symbol σ in

P ,
2. for all path patterns Pi, set the initial matching state IM [Pi] to 1hi , and then set the

packed initial matching state IM := (IM [P1], . . . , IM [Pl]),
3. for all path patterns Pi and all nodes u of P , compute a synchronization bit-mask

Syn[Pi, u],
4. for all symbols σ and recursive level lev , set the packed synchronization bit-mask

PSyn[σ, lev] = (PSyn1, . . . , PSynl), where if uj ∈ N(σ,lev) appears on Pi, then PSyni =

Syn[Pi, uj]; otherwise PSyni = 0hi .

5. SetPSynMask(P), /* set PSynMask [SYN , lev] for at most h2l distinct values of SYN and
a recursive level lev, */

6. set ZMask := (1h1−10, . . . , 1hl−10) and AccCheck := (01h1−1, . . . , 01hl−1).

Visit each node d of T in postorder and compute the matching state of d as follows.

Step 1. /* Computing the matching state of d from the matching states of the children. Let
d1, . . . , dt be children of d. The label of d is σ. */

1. If d is a leaf, then M [d] := IM ; otherwise M [d] := M [d1]& · · ·&M [dt],
2. M [d] := ((M [d] << 1) & ZMask) | B[σ].

Step 2. /* Synchronization between path patterns */
For lev = 1, . . . , Lσ do /* Lσ denotes the recursive level of σ. */

1. SYN := M [d] & PSyn[σ, lev],
2. M [d] := M [d] | PSynMask [SYN , lev].

Step 3. /* This step determines whether a pseudo-match occurs. */
1. Acc := M [d] | AccCheck ,
2. if Acc = AccCheck , then return d as a pseud-occurrence.

Fig. 8. The algorithm FastPseudoTreeMatch

level. We classify nodes of P into subsets N(σ,lev) such that N(σ,lev) consists of
all nodes which are labeled by the symbol σ and have the recursive level lev.
Let N(σ,lev) = {u1, . . . , us} for any symbol σ and any recursive level lev. Then
we define PSyn[σ, lev] = (PSyn1, . . . ,PSyn l), where if a node uj (1 ≤ j ≤ s)
appears on Pi, then PSyni = Syn[Pi, uj]; otherwise PSyni = 0hi .

We introduce an array PSynMask [SYN , lev] of bit-sequences to reflect the re-
sult of a synchronization to a matching state, where SYN = (SYN 1, . . . , SYN l)
and each SYN i corresponds to SYN [Pi] in PseudoTreeMatch. Let us define Pu

to be the set of path patterns Pi such that node u appears on Pi. Then, for any
nodes u, v ∈ N(σ,lev), we have Pu ∩ Pv = ∅. Hence we can represent SYN [Pi]
for all nodes in N(σ,lev) by SYN . The algorithm FastPseudoTreeMatch computes
SYN in one step, while PseudoTreeMatch compute SYN [Pi] for each node of
N(σ,lev). The value of PSynMask [SYN , lev] is defined to be (PSynMask1, . . . ,
PSynMask l), where each PSynMask i corresponds to SynMask computed for Pu

corresponding to u ∈ N(σ,lev). Hence we can update a matching state M [d]
using PSynMask [SYN , lev] in the same way as Step 2 of PseudoTreeMatch.
FastPseudoTreeMatch carries out this task in one step at 2 of Step 2. We com-
pute PSynMask [SYN , lev] in Step 0 by the procedure SetPSynMask(P) in given
Fig. 9. In SetPSynMask(P), Kei

j
is defined to be a bit sequence (K1, . . . ,Kl) such

that only the d(ui)-th bit from the leftmost bit of Kei
j

is 1 and all other bits are
0, where Pui = {Pei

1
, . . . , Pei

ti
} for any ui ∈ N(σ,lev) and d(ui) is the depth of

Procedure SetPSynMask(P)
For all symbols σ which occurs in P , do the following:

Step 1. /* set SubMask [SYN , lev]. */
1. for lev = 1, . . . , LP do
2. for ui ∈ {u1, . . . , us} (= N(σ,lev)) other than the root of P , do
3. TMask := (TMask1, . . . , TMask l), where TMaskk = Syn[Pk, ui],
4. for SYN = K

ei
1
, . . . ,K

ei
ti

do

5. SubMask [SYN , lev] := TMask ,
6. end-for
7. end-for
8. end-for

Step 2. /* compute PSynMask [SYN , lev]. */
1. for lev = 1, . . . , LP do
2. IX := 0, Val[0] := 0 and PSynMask [0, lev] := (0h1 , . . . , 0hl),
3. for k1 = K

e1
1
, . . . ,K

e1
t1

, . . . ,Kes
1
, . . . ,Kes

ts
do

4. t := IX ,
5. for k2 := 0, . . . , t do
6. PSynMask [k1 + Val[k2], lev] := PSynMask[Val[k2], lev] | SubMask [k1, lev],
7. IX := IX + 1,
8. Val[IX] := k1 + Val[k2],
9. end-for

10. end-for
11. end-for

Fig. 9. The procedure SetPSynMask.

Algorithm ExactTreeMatch(P , T)

Step 1. Do PseudoTreeMatch(P, T) or FastPseudoTreeMatch(P, T).
Step 2. For all pseud-occurrences d of P in T do

if CheckMatch({vP }, d) returns {vP }, then return d as an exact occurrence, where vP is the
root of P .

Fig. 10. The algorithm ExactTreeMatch

ui. Furthermore we make use of two special bit-masks, ZMask and AccCheck .
ZMask is set to (1h1−10, . . . , 1hl−10) and is used for clearing the rightmost bit
of each matching state in a packed bit-sequence. We need such a clearing pro-
cess because a shift operation sets the rightmost bit to 0. AccCheck is set to
(01h1−1, . . . , 01hl−1) and is used for checking whether or not a pseud-occurrence
occurs. We have the following theorem.

Theorem 2. FastPseudoTreeMatch can find out all pseud-occurrences of P in
T in O((LP · n + h · 2l) · dh·l

W e) time and O((n + h · 2l) · dh·l
W e) space.

Let m be the number of nodes in P . Then we have h · 2l ≤ 2m. Hence if
m = log n, then FastPseudoTreeMatch runs in O(LP · n · dh·l

W e) time and space.
Furthermore, if h · l = O(W) and LP = O(1), then it runs in O(n) time.

4 A Tree Pattern Matching Algorithm

In the previous section, we have given an algorithm to find all pseud-occurrences
of P in T . A pseud-occurrence allows a mapping to map multiple nodes of P

Function CheckMatch(G, d)

Step 1. Match := ∅,
Step 2. for all g ∈ G do

1. if g is a leaf of P , then add g to Match;
2. otherwise do the following:

(a) classify children d1, . . . , dt of d into groups Da1 , . . . , Dar such that Daj
(1 ≤ j ≤ r)

consists of all nodes with label aj , and similarly classify children g1, . . . , gt′ of g into
groups Fa1 , . . . , Far in the same way.

(b) for all groups Daj
= Da1 , . . . , Dar do

i. R := ∅,
ii. for all nodes dk ∈ Daj

do

A. compute the set Gj
k consisting of all nodes g′ of P such that g′ is a child of

g and dk becomes a pseud-occurrence of the subtree rooted by node g′ using
the matching state M [dk] of dk.

B. F j
k := CheckMatch(Gj

k, dk),

C. add all pairs (g′, dk) with g′ ∈ F j
k to R,

iii. if ExistMap(Faj
, Daj

, R) = false, then go to next node of G.

(c) add g to Match,
Step 3. return Match.

Fig. 11. The function CheckMatch

to one node of T , but the condition of an occurrence of P does not. Therefore,
to find out all occurrences of P , we must check whether a pseud-occurrences
satisfies the condition of an occurrence or not.

4.1 A Special Case

Here let us consider a special case; for any node v of a pattern tree P , all
children of v have distinct labels. If P is the case, then pseud-occurrences become
occurrences of P . Hence, we have the following theorem.

Theorem 3. Let P be a pattern tree such that for any node of P , labels of any
two children of the node are distinct. Then the algorithms PseudoTreeMatch and
FastPseudoTreeMatch can find out all occurrences of P in T .

4.2 A General Case

Let us consider a general case, that is, there are siblings in P such that they have
the same label. The most difficult problem is that two or more nodes of P may
be mapped to one node of T . We extract occurrences from pseud-occurrences by
checking whether or not there is a one-to-one mapping. As in [11], the algorithm
is designed using an algorithm finding a maximum matching on bipartite graphs.
The algorithm ExactTreeMatch in Fig.10 checks whether a pseud-occurrence of
P in T is an occurrence of P using the function CheckMatch given in Fig.11.

Given a node d in T and a subset G of nodes of P such that d becomes a pseud-
occurrence of the subtree rooted by node g ∈ G, the function CheckMatch(G, d)
returns the subset Match of G such that d becomes an occurrence. CheckMatch
recursively checks whether a pseud-occurrence satisfies a one-to-one mapping in

(b) of Step 2. The function ExistMap(Faj , Daj , R) returns true if there is a subset
R′ of R such that (1) for any g ∈ Faj , there is d ∈ Daj with (g, d) ∈ R′, and (2)
for any (g1, d1), (g2, d2) ∈ R′, if g1 6= g2, then d1 6= d2; otherwise returns false. We
can view (Faj , Daj , R) as a bipartite graph having the vertex set Faj ∪Daj and
the edge set R. This time, ExistMap(Faj , Daj , R) can be implemented using an
algorithm for a maximum matching on bipartite graphs. For a pseud-occurrence
d of P in T , let Td be the subtree of T such that the root is d and the other nodes
consists of all descendants of d which are at most h away from d. Then we define
Np to be

∑
d |Td|, where d takes all pseud-occurrences of P and |Td| denotes the

number of nodes in Td. Then if we use the algorithm by Hopcroft and Karp [8],
we have the following theorem. Here note that since we have Np ≤ n · LP and
Lp ≤ h, the algorithm runs in O(n · h · l3/2) time and O(n · h · l) space in the
worst case.

Theorem 4. The algorithm ExactTreeMatch can find out all occurrences of P
in T in O(NP · l3/2) time and O(NP · l) space plus the complexity of Pseu-
doTreeMatch or FastPseudoTreeMatch.

Acknowledgments. We are grateful to anonymous referees for many variable
comments, which helped to improve algorithms and the presentation.

References

1. R. Baeza-Yates and G.H. Gonnet, A New Approach to Text Searching, Communi-
cations of the ACM, 35, 10(1992) 74–82.

2. C. Chauve, Tree pattern matching with a more general notion of occurrence of the
pattern, Information Processing Letters, 82(2001) 197–201.

3. R. Cole and R. Hariharan, Verifying Candidate Matches in Sparse and Wildcard
Matching , Proc. of the 34th ACM STOC, (2002) 592–601.

4. R. Cole and R. Hariharan, Tree Pattern Matching to Subset Matching in Linear
Time, SIAM J. Comput., 32, 4(2003) 1056–1066.

5. M. Dubiner, Z. Galil, and E. Magen, Faster Tree Pattern Matching, Journal of the
ACM, 41, 2(1994) 205–213.

6. M. Götz, C. Koch and W. Martens, Efficient Algorithms for the Tree Homeomor-
phism Problem, Proc. of the DBLP 2007, LNCS 4797, (2007) 17–31.

7. C.M. Hoffman and M.J. O’Donnell, Pattern matching in trees, Journal of the ACM,
29, 1(1982) 68–95.

8. J.E. Hopcroft and R.M. Karp, An n5/2 Algorithm for Maximum Matchings in
Bipartite Graphs, SIAM J. Comput., 2, 4(1973) 225–231.

9. P. Kilpeläinen and H. Mannila, Ordered and Unordered Tree Inclusion, SIAM J.
Comput., 24, 2(1995) 340–356.

10. J.V. Leeuweno, Graph Algorithms, In J.V. Leeuwen, ed. Handbook of Theoretical
Computer Science, Elsevier Science Pub., 1990.

11. R. Shamir and D. Tsur, Faster Subtree Isomorphism, J. of Algorithms, 33(1999)
267–280.

12. J.T. Yao, M. Zhang, A Fast Tree Pattern Matching Algorithm for XML Query,
Proc. of the WI’04, (2004) 235–241.

13. P. Zezula, F. Mandreoli, and R. Martoglia, Tree Signatures and Unordered XML
Pattern Matching, Proc. of the SOFSEM’04, LNCS 2932, (2004) 122–139.

