Compact and Low Delay Routing Labeling
Scheme for Unit Disk Graphs

Chenyu Yan, Yang Xiang, and Feodor F. Dragan

Algorithmic Research Laboratory, Department of Computer Science
Kent State University, Kent, Ohio, U.S.A.
{cyan,yxiang,dragan}@cs.kent.edu

Abstract. In this paper, we propose a new compact and low delay rout-
ing labeling scheme for Unit Disk Graphs (UDGs) which often model
wireless ad hoc networks. We show that one can assign each vertex of an
n-vertex UDG G a compact O(log? n)-bit label such that, given the label
of a source vertex and the label of a destination, it is possible to com-
pute efficiently, based solely on these two labels, a neighbor of the source
vertex that heads in the direction of the destination. We prove that this
routing labeling scheme has a constant hop route-stretch (= hop delay),
i.e., for each two vertices ¢ and y of G, it produces a routing path with
h(z,y) hops (edges) such that h(z,y) < 3-da(x,y)+12, where da(z,y) is
the hop distance between x and y in G. To the best of our knowledge, this
is the first compact routing scheme for UDGs which not only guaranties
delivery but has a low hop delay and polylog label size. Furthermore, our
routing labeling scheme has a constant length route-stretch.

1 Introduction

A common assumption for wireless ad hoc networks is that all nodes have the
same maximum transmission range. By proper scaling, one can model these
networks with Unit Disk Graphs (UDGSs), which are defined as the intersection
graphs of equal sized circles in the plane [3]. In other words, there is an edge
between two vertices in an UDG if and only if their Euclidean distance is no
more than one.

Communications in networks are performed using routing schemes, i.e., mech-
anisms that can deliver packets of information from any vertex of a network to
any other vertex. In most strategies, each vertex v of a graph has full knowledge
of its neighborhood and uses a piece of global information available to it about
the graph topology — some “sense of direction” to each destination — stored
locally at v. Based only on this information and the address of a destination
vertex, vertex v needs to decide whether the packet has reached its destination,
and if not, to which neighbor of v to forward the packet. The efficiency of a
routing scheme is measured in terms of its multiplicative route-stretch (or ad-
ditive route-stretch), namely, the maximum ratio (or surplus) between the cost
(which could be the hop-count or the length of a route, produced by the scheme
for a pair of vertices, and the cost of an optimal route available in graph for that

F. Dehne et al. (Eds.): WADS 2009, LNCS 5664, pp. 566-[577 2009.
© Springer-Verlag Berlin Heidelberg 2009

Compact and Low Delay Routing Labeling Scheme for Unit Disk Graphs 567

pair. Here, the hop-count of a route is defined as the number of edges on it and
the length of a route is defined as the sum of the Euclidean length of its edges.
Using different cost functions, for a given graph G and a given routing scheme
on G, one can define two different notions of route-stretch: hop route-stretch and
length route-stretch.

The most popular strategy in wireless networks is the geographic routing
(sometimes called also the greedy geographic routing), where each vertex forwards
the packet to the neighbor geographically closest to the destination (see survey
[12] for this and many other strategies). Each vertex of the network knows its po-
sition (e.g., Euclidean coordinates) in the underlying physical space and forwards
messages according to the coordinates of the destination and the coordinates of
neighbors. Although this greedy method is effective in many cases, packets may
get routed to where no neighbor is closer to the destination than the current ver-
tex. Many recovery schemes have been proposed to route around such voids for
guaranteed packet delivery as long as a path exists [4/I4IT6]. These techniques
typically exploit planar subgraphs (e.g., Gabriel graph, Relative Neighborhood
graph), and packets traverse faces on such graphs using the well-known right-
hand rule. Although these techniques guarantee packet delivery, none of them
give any guaranties on how the routing path traveled is “close” to an optimal
path; the worst-case route-stretch can be linear in the network size.

All earlier papers assumed that vertices are aware of their physical location,
an assumption which is often violated in practice for various of reasons (see
[7UT5121]). In addition, implementations of recovery schemes are either based on
non-rigorous heuristics or on non-trivial planarization procedures. To overcome
these shortcomings, recent papers [7I5I21] propose routing algorithms which
assign virtual coordinates to vertices in a metric space X and forward messages
using geographic routing in X. In [21], the metric space is the Euclidean plane,
and virtual coordinates are assigned using a distributed version of Tutte’s “rub-
ber band” algorithm for finding convex embeddings of graphs. In [7], the graph is
embedded in R for some value of d much smaller than the network size, by iden-
tifying d beacon vertices and representing each vertex by the vector of distances
to those beacons. The distance function on R? used in [7] is a modification of
the ¢; norm. Both [7] and [2I] provide substantial experimental support for the
efficacy of their proposed embedding techniques — both algorithms are successful
in finding a route from the source to the destination more than 95% of the time
— but neither of them has a provable guarantee. Unlike embeddings of [7] and
[21], the embedding of [I5] guarantees that the geographic routing will always
be successful in finding a route to the destination, if such a route exists. Algo-
rithm of [15] assigns to each vertex of the network a virtual coordinate in the
hyperbolic plane, and performs greedy geographic routing with respect to these
virtual coordinates. However, although the experimental results of [15] confirm
that the greedy hyperbolic embedding yields routes with low route-stretch when
applied to typical unit-disk graphs, the worst-case route-stretch is still linear in
the network size.

568 C. Yan, Y. Xiang, and F.F. Dragan

In this paper, we propose a new compact and low delay routing labeling
scheme for Unit Disk Graphs. We show that one can assign each vertex of an
n-vertex UDG G a compact O(log2 n)-bit label such that, given the label of a
source vertex and the label of a destination, it is possible to compute efficiently,
based solely on these two labels, a neighbor of the source vertex that heads in
the direction of the destination. We prove that this routing labeling scheme has a
constant hop route-stretch (= hop delay), i.e., for each two vertices and y of G,
it produces a routing path with h(z,y) hops such that h(z,y) < 3-dg(z,y)+12,
where dg(z,y) is the hop distance between x and y in G. To the best of our
knowledge, this is the first compact routing scheme for UDGs which not only
guaranties delivery but has a low hop delay and polylog label size. Furthermore,
our routing labeling scheme has a constant length route-stretch. Note also that,
unlike geographic routing or any other strategies discussed in [4[7[T2TATHIT6I2T],
our routing scheme is degree-independent. That is, each current vertex makes
routing decision based only on its label and the label of destination, does not
involve any labels of neighbors. The label assigned to a vertex in our scheme
can be interpreted as its virtual coordinates. To assign those labels to vertices,
we need to know only the topology of the input unit disk graph and relative
Euclidean lengths of its edges.

To obtain our routing scheme, we establish a novel balanced separator theorem
for UDGs, which mimics the well-known Lipton and Tarjan’s planar balanced
shortest paths separator theorem. We prove that, in any n-vertex UDG G, one
can find two hop-shortest paths P(s,z) and P(s,y) such that the removal of
the 3-hop-neighborhood of these paths (i.e., N3[P(s,z)UP(s,y)]) from G leaves
no connected component with more than 2/3n vertices. The famous Lipton and
Tarjan’s planar balanced separator theorem has two variants (see [19]). One
variant (called planar balanced \/n-separator theorem) states that any n-vertex
planar graph G has a set S of vertices such that |S| = O(y/n) and the removal of
S from G leaves no connected component with more than 2/3n vertices. Another
variant (called planar balanced shortest-paths separator theorem) states that any
n-vertex planar graph G has two shortest paths removal of which from G leaves
no connected component with more than 2/3n vertices. Although the first variant
of the planar balanced separator theorem has an extension to the class of disk
graphs (which includes UDGs) (see [I]), the second variant of the theorem proved
to be more useful in designing compact routing (and distance) labeling schemes
for planar graphs (see [I3I22]). To the date, there was not known any extension
of the planar balanced shortest-paths separator theorem to unit disk graphs. The
paper [11] notes that “Unfortunately, Thorup’s algorithm uses balanced shortest-
path separators in planar graphs which do not obuviously extend to the unit-disk
graphs” and uses the well-separated pair decomposition to get fast approximate
distance computations in UDGs. We do not know how to use the well-separated
pair decomposition of an UDG G to design a compact and low delay routing
labeling scheme for G. Application of the balanced \/--separator theorem of [I]
to UDGs can result only in routing (and distance) labeling schemes with labels
of size no less than O(y/nlogn)-bits per vertex. Our separator theorem allows

Compact and Low Delay Routing Labeling Scheme for Unit Disk Graphs 569

us to get O(log® n)-bit labels which is more suitable for the wireless ad hoc and
sensor networks where the issues of memory size and power-conservation are
critical.

Our new balanced shortest-paths—3-hop-neighborhood separator theorem al-
lows us to build, for any n-vertex UDG G = (V, E), a system 7 (G) of at most
210g% n + 2 spanning trees of G such that, for any two vertices and y of G,
there exists a tree T in 7 (G) with dr(z,y) < 3-dg(x,y) + 12. That is, the
distances in any UDG can be approximately represented by the distances in at
most 2log 3n+ 2 of its spanning trees. An earlier version of these results has

appeared in [24] (see Section 3.4 and pages 124 and 125 of Section 3.5.5). Taking
the union of all these spanning trees of G, we obtain a hop (3, 12)-spanner H of
G (i.e., a spanning subgraph H of G with dg(z,y) < 3-dg(x,y) + 12 for any
x,y € V) with at most O(nlogn) edges. There is a number of papers describing
different types of length-spanners and hop-spanners for UDGs (see [2ISITOIT7IIS]
and literature cited therein). Many of those spanners have nice properties of be-
ing planar or sparse, or having bounded maximum degree or bounded length (or
hop) spanner-stretch, or having localized construction. Unfortunately, neither of
those papers develops or discusses any routing schemes which could translate
the constant spanner-stretch bounds into some constant route-stretch bounds.

2 Notions and Notations

Let V be a set of n = |V| nodes on the Euclidean plane and let G = (V, E) be the
unit disk graph (UDG) induced by those nodes. Let also m = | E|. For each edge
(a,b) of G, by (a,b) we denote also the open straightline segment representing
it, and by |ab| the Euclidean length of the edge/segment (a,b). For simplicity, in
what follows, we will assume that any two edges in G can intersect at no more
than one point (i.e., no two intersecting edges are on the same straight line), and
no three edges intersect at the same point.

For a path P of G, the hop-count of P is defined as the number of edges on
P and the length of P is defined as the sum of the Euclidean length of its edges.
For any two vertices ¢ and y of G, we denote: by dg(z,y), the hop-distance (or
simply distance) in G between x and y, i.e., the minimum hop-count of any path
connecting z and y in G; by lg(x,y), the length-distance in G between x and y,
i.e., the minimum length of any path connecting x and y in G.

A graph family I' is said (see [20]) to have an I(n) bit (s,r)-approximate
distance labeling scheme if there is a function L labeling the vertices of each
n-vertex graph in I" with distinct labels of up to I(n) bits, and there exists an
algorithm /function f, called distance decoder, that given two labels L(v), L(u) of
two vertices v, u in a graph G from I', computes, in time polynomial in the length
of the given labels, a value f(L(v), L(u)) such that dg(v,u) < f(L(v), L(u)) <
s-dg(v,u)+ 7. Note that the algorithm is not given any additional information,
other that the two labels, regarding the graph from which the vertices were
taken. Similarly, a family I" of graphs is said (see [20]) to have an I(n) bit
routing labeling scheme if there exist a function L, labeling the vertices of each

570 C. Yan, Y. Xiang, and F.F. Dragan

n-vertex graph in I" with distinct labels of up to I(n) bits, and an efficient
algorithm/function, called the routing decision or routing protocol, that given
the label L(v) of a current vertex v and the label L(u) of the destination vertex
u (the header of the packet), decides in time polynomial in the length of the
given labels and using only those two labels, whether this packet has already
reached its destination, and if not, to which neighbor of v to forward the packet.

Let R be a routing scheme and R(z,y) be a route (path) produced by R for
a pair of vertices z and y in a graph G. We say that R has: hop («, 3)-route-
stretch if hop-count of R(z,y) is at most a-dg(x,y) + 0, for any x,y € V; length
(a, B)-route-stretch if length of R(z,y) is at most a-lg(z,y)+ 5, for any x,y € V.

Let H = (V, E’) be a spanning subgraph of a graph G = (V, E). We say that
H is: hop (o, B)-spanner of G if dgy(x,y) < «a-dg(z,y) + 5, for any z,y € V;
length («, B8)-spanner of G if ly(x,y) < a-lg(z,y) + 3, for any z,y € V.

In Section [we will need also the notion of collective tree spanners from [6]. It
is said that a graph G admits a system of u collective tree (v, 3)-spanners if there
is a system 7 (@) of at most p spanning trees of G such that for any two vertices
x,y of G a spanning tree T € 7 (G) exists such that dr(x,y) < a-dg(z,y) + 0.

For a vertex v of G, the kth neighborhood of v in G is the set Nj[v] =
{u € V : dg(v,u) < k}. For a vertex v of G, the sets Ng[v] = N}[v] and
Ng(v) = Ng[v] \ {v} are called the neighborhood and the open neighborhood of
v, respectively. For a set S C V, by N&[S] = Uves NE[v] we denote the kth
neighborhood of S in G.

3 Intersection Lemmas

In this section we present few auxiliary lemmas. From the definition of unit disk
graphs, we immediately conclude the following (proofs of these lemmas and all
other omitted proofs can be found in the journal version of the paper).

Lemma 1. In an UDG G = (V, E), if edges (a,b),(c,d) € E intersect, then G
must have at least one of (a,c), (b,d) and at least one of (a,d), (c,b) in E.

Let r be an arbitrary but fixed vertex of an UDG G = (V, E), and Lo, L1, ... L,
be the layering of G with respect to r, where L, = {u € V : dg(r,u) = i}. For
G, using this layering, we construct a layering tree T,,;4 rooted at r as follows:
each vertex v € L; (i € {1,...,q}) chooses a neighbor u in L;_; such that |vu]
is minimum (closest neighbor in L;_;) to be its father in Ty, (breaking ties
arbitrarily). Let E(Torig) be the edge set of Tprig. This tree Toriq will help us to
construct a balanced separator for G. It will be convenient, for each vertex v € V,
by L(v) to denote the layer index of v, i.e., L(v) = dg(r,v). In what follows, we
will also adopt the following agreements (unless otherwise is specified). When
we refer to any edge (a,b) of Tyrig, we assume L(a) = L(b) — 1. When we refer
to any two intersecting edges (a,b) and (¢, d) of T,,4 (in that order), we assume
that L(a) < L(c).

Lemma 2. In Ty, no two edges (a,b) and (c,d) with L(a) = L(c) and L(b) =
L(d) can cross.

Compact and Low Delay Routing Labeling Scheme for Unit Disk Graphs 571

Lemma 3. Let (a,b), (¢,d) be two edges in Torig that intersect. If L(a) = L(b) —
1, L(e) = L(d) — 1 and L(a) < L(c), then L(a) = L(c) — 1, (a,d) ¢ E and
(b,c) € E.

For an UDG G = (V,E), in what follows, by G, = (V},, Ep) we denote the
planar graph obtained from G by turning each edge intersection point in G into
a vertex in G). The vertices of T,,4 (i.e. vertices of G) will be called real vertices,
to differentiate them from imaginary and null points that will be defined later. In
the following, we will use the term “element” as a general name for real vertices,
imaginary points and null points. For any graph G, we will use E(G) to denote
the set of its edges and V(G) to denote the set of its vertices (or elements, if
V(G) contains imaginary or null points). Below, we will create an imaginary
point (details will be given later) at the point where two edges (a,b) and (¢, d)
from T,y intersect. Recall that we agreed to assume that L(a) = L(b) — 1,
L(¢) = L(d) — 1 and L(a) < L(c). By Lemma Bl we know that L(a) = L(c) — 1.
Now, assuming that the imaginary point is m, we define a(m) = a, b(m) = b,
¢(m) = c and d(m) = d.

4 Balanced Separator for Restricted UDGs

In this section, we consider a special unit disk graph, a simple-crossing UDG. On
this simple case, we demonstrate our idea of construction of a balanced separa-
tor. It may help the reader to follow the much more complicated case, where we
construct a balanced separator for an arbitrary UDG. We define a simple-crossing
UDG to be an UDG G = (V, E) with each edge crossing at most one other edge.
In what follows, we will transform tree 7,,;, into a special spanning tree 7'
for the planar graph G,. Let T' = Ty, initially. For each two intersecting edges
(a,b) and (c,d) of Tprig (by Lemma [B, we know L(a) = L(c) — 1), we do the
following. Create a vertex mqpc,q at the point where (a,b) and (¢, d) intersect.
We call mg p.c.a an imaginary point. Remove edges (a,b), (¢,d) from T and add
vertex Mg, pc.q and edges (Mq.b.c,d, d), (@, Mapb,c,a) and (b, Mg pc.q) into T. One
can see that all the descendants of b and d in T find their way to the root via a.
There are two other kinds of edge intersections in G: the intersection between
a tree-edge and a non-tree-edge and the intersection between two non-tree-edges.
We handle them separately. First, assume a tree-edge (u, w) intersects a non-tree-
edge (s,t). We create a new vertex, called a null point, say o, at the point where
(u,w) and (s,t) intersect. We remove edge (u,w) from T and add vertex o and
edges (u, 0), (0, w) into T'. Now assume two non-tree-edges (a,b) and (¢, d) inter-
sect. We create a new vertex, called a null point, say o, at the point where (a, b)
and (c, d) intersect. We add vertex o (as a pendant vertex) and edge (a, o) into T'.
It is easy to see that 1" is a spanning tree for the planar graph G),. We will need
the Lipton and Tarjan’s planar separator theorem [19] in the following form.

Theorem 1 (Planar Separator Theorem). [19] Let G be any planar graph
with non-negative vertex weights and W be the total weight of G (which is the
sum of the weights of its vertices). Let T be any spanning tree of G rooted at a

572 C. Yan, Y. Xiang, and F.F. Dragan

vertex . Then, there exist two vertices x and y in G such that if one removes
from G the tree-paths connecting in T r with x and r with y, then each connected
component of the resulting graph has total weight at most 2/3W . Vertices x and
y can be found in linear time.

We can apply Theorem [l to T and G, by letting the weight of each real vertex
be 1 and the weight of each imaginary or null point be 0 in G;,. Then, there must
exist in T two paths P; = Pr(r,z) and P, = Pr(r,y) such that removal of them
from G, leaves no connected component with more than 2/3n real vertices.

Using paths Py = (9 = r,21,...,2p—1, 2k = x) and P» = (yo = r,y1,.-.,
yi—1,y1 = y) of G, (of T'), we can create a balanced separator for G as follows.
(1) Skip all the null points in P; and P,. (2) Skip every imaginary point in P;
which is collinear with its two neighbors in P; (i = 1,2). (3) For any imaginary
point Mg p,c,q in P; (i = 1,2) which is not collinear with its two neighbors in P,
(the only possible case is where L(a) = L(c) — 1 and imaginary point mg.p.c.q
connects a and d in P;), replace the subpath (a,mgp ¢4, d) by either (a,c,d) (if
(a,c) € E) or (a,b,d) (if (b,d) € F). By Lemmall (a,c) or (b,d) is in E. Let P/
be the resulting path obtained from P; (i = 1,2). It is easy to check that P; and
P} are shortest paths in G. Here and in what follows, by a shortest path we mean
a hop-shortest path. We can also show that the union of N}[P{] and N} [Py is
a balanced separator for G, i.e., removal of N}[P{] U NA[P)] from G leaves no
connected component with more that 2/3n vertices. Assume that removal of Py
and P from G = (Vj,) results in removing a set of edges E, from F,, and
removal of NA[P{] and NA[Pj] from G = (V, E) results in removing a set of
edges I from E. It is easy to check that, for any edge e;, € E, there exists an
edge ¢’ € E’ that covers e}, The latter implies that the union of N[P{] and
N4 [PJ] is a balanced separator for G. A formal proof of this will be presented
in the journal version of the paper.

5 Balanced Separator for Arbitrary UDGs

In an arbitrary unit disk graph G = (V, E), an edge may cross any number of other
edges. Our basic strategy for building a balanced separator for G is similar to one
we used in the case of a simple-crossing UDG, but details are more complicated.
Let T' = T4 initially. We will revise T" to create a special spanning tree for the
planar graph G, obtained from G. Then, we will apply the Planar Separator The-
orem from [19] (Theorem [above) to G, and T to get a balanced separator S for
G,. Finally, we will recover from S the required separator for G.

5.1 Building a Special Spanning Tree T of G,

In what follows, the edges of the tree Ty,.;q Will be called original tree-edges.
By Lemma [3 for any two intersecting original tree-edges (a,b) and (¢, d) (for
which we assumed that L(a) = L(b) — 1, L(¢) = L(d) — 1 and L(a) < L(c)), we
have L(a) = L(c) — 1, (a,d) ¢ E(G) and (b,¢) € E(G). We handle this kind of
intersections (between original tree-edges) using PROCEDURE 1.

Compact and Low Delay Routing Labeling Scheme for Unit Disk Graphs 573

PROCEDURE 1. Handle original tree-edge intersections
Input: A layering tree T,rig rooted at 7.

Output: A tree T' where all original tree-edge intersections resolved.
Method: /* Break ties arbitrarily */

(1) Let Ly ={v: L(v) =i} and T = Torig;
(2) Let ¢ be the maximum layer number of T
(3) FOR:=1toqDO
(4) FOR each vertex v; € L; DO
(5) FOR each vertex vx € L;iy1 adjacent to v; in T DO
(6) IF there is an original tree-edge intersection on (v;,vy) such that
L(vj) is the SECOND smallest layer index among the layer indices
of all four end-vertices of the two edges giving the intersection
THEN DO
(7) Choose such an original tree-edge intersection closest to v and
assume it is the intersection between (v;,vx) and (z,y) in T
and between (vj,vx) and (vp,vs) in Torig (i-e., (z,y) C (vp,vn));

(8) Create an imaginary point m; i p.» at the point where (v;,vx) and
(z,y) intersect;
9) Update T by removing edges (v;,vx) and (z,y), and adding vertex

My k,p,n and edges (M k.p.hy T)s (Mg k,p,0sY)s (Mykep,h, Vk)j
(10) RETURN T

Lemma 4. PROCEDURE 1 returns a tree T with all original tree-edge inter-
sections resolved (i.e., edges of T do not cross each other).

In addition, there are two other kinds of intersections remaining: the intersection
between an edge in F(T') (T-edge) and an edge in E(G) \ E(T) (non-T-edge),
and intersection between two non-T-edges.

First we handle intersections between T-edges and non-T-edges. They are
resolved the same way as in Sectiondl Here, we rephrase the rule. Assume (u, w)
is a T-edge, (s,t) is a non-T-edge. Add a null point, say o, at the point where
(u,w) and (s,t) intersect. Remove edge (u, w) from T and add vertex o and edges
(u,0), (0,w) into T. After resolving all intersections of this kind, 7" becomes a
subgraph of G,. Note that it is possible that 1" does not span yet all elements
of V(Gp). Let name this T as Tsyup.

Now, we deal with intersections between two non-Tj,;-edges. This is more
complicated than it was in Section M for restricted UDGs. We will grow Tsup
to a spanning tree Tspqn for G, (extension Tspqn 0f Toyp will cover all elements
of V(G,)). We use a procedure similar to one of building a shortest path tree
from a set of vertices. We assign to each vertex in Ty, a weight according to
the following formula. In formula, if v is an imaginary point or a null point, we
assume v is at the intersection between edges (a,b) and (¢, d) of G.

weight(v) = {

To build our spanning tree for G,, we use PROCEDURE 2. At the beginning,
for any v € V(Gp)\V (Tsup), distance[v] = oo and father of v is undefined.

0, if v is a real vertex;
min{|av|, |bv|, |ev],|dv|}, if v is an imaginary or a null point.

574 C. Yan, Y. Xiang, and F.F. Dragan

PROCEDURE 2. Build a spanning tree for G, from T,

Input: A tree T = Tsup;
Output: A tree Tspan as a spanning tree for Gp.
Method: /* Break ties arbitrarily */

1) FOR each i in V(T) DO
2 FOR each neighbor j € V(G,)\V(T) of i DO
3 tmp = weightl[i] + |ij];

)

)

)

) IF tmp < distance[j] DO

) distance[j] := tmp;

) father[j] :=i;

) Q= VIG\V(T);

) WHILE Q is not empty DO

) u :=node in @ with smallest distance[];
0) remove u from @ and add v into T
1) FOR each neighbor v € Q of u DO
2) tmp := distance[u] + |uvl;

3) IF tmp < distance[v] DO

4) distance[v] := tmp;

5) father[v] := u;

6) RETURN Tipay := T

It is easy to check that Ty, is a spanning tree of the planar graph G),.

5.2 Finding a Balanced 2XxShortest-Paths—3-Hop-Neighborhood
Separator for G

Now we can apply Theorem[Ilto G, and Tiper by letting the weight of each real
vertex be 1 and the weight of each imaginary or null point be 0, and get a bal-
anced separator S of G,. Assume that S is the union of paths P, = Pr,__, (7,)
and P, = Pr,,,, (r,y). There are three kinds of elements on P; and P: real
vertices, imaginary points and null points. Generally, each imaginary point or
null point is adjacent to at most four elements in G,, and each element in P;
or P, has the previous element and the next element, except for the root r (it
has only the next element) and elements x and y (they have only the previous
element). Let u be the last real or imaginary point in P; (or P;). We name all
null points after v in P (or P;) as the tail null points. For any element in Py
or P, there are two possible relations between itself, its previous element and
its next element: the element, its previous element and its next element are on
the same line, which means its previous element and its next element are on the
same edge of G (according to our general assumption that no two edges of G are
on the same line); the element, its previous element and its next element are not
on the same line, which means its previous element and itself are on one edge of
G, and its next element and itself are on another edge of G.

Using paths Py = (9 = r,21,...,2p-1, 2 = z) and P» = (yo = r,y1,.-.,
yi—1,y1 = y) of G (of Tsparn), We will find the corresponding balanced separator
for G using the following steps. (1) We skip all null points in P; and P». Let

Compact and Low Delay Routing Labeling Scheme for Unit Disk Graphs 575

the resulting paths be P; and Pj, respectively. (2) We skip in P| and P each
imaginary point whose previous element and next element are on the same edge
of T,pig. For example, let (zf,z;,x;) be a fragment of path P; or Pj, where
x; i1s an imaginary point and {z ¢, x;,x;} are collinear, then (xf,x;,x;) will be
replaced with (zy,z;). Let the resulting paths be P’ and Py, respectively. (3)
Replace each remaining imaginary point m in P/ and Py with two vertices: b(m)
followed by ¢(m) (see end of Section [for these notations). For example, let
(xf,x;,25) be a fragment of path P{’ or Py, where x; is an imaginary point and
x5 is closest to the root r among {zy, x;,z;}. Then, (zf,z;, z;) will be replaced
with (z,b(x;), c(x;), z;). Let the resulting paths be P;” and Pj”, respectively.
By Lemmal3] the edge (b(z;),c(x;)) exists in G. It is easy to check that P;” and
Pj" are valid paths in G.

A path P of G is called a 2xshortest path iff for any two vertices z,y in P,
dp(z,y) < 2dg(z,y).

Theorem 2. P/” and PY' are 2x shortest paths in G.

We can show also that the union of N2[P{"] and N2 [P}"] is a balanced sepa-
rator for G with 2/3-split, i.e., removal of N2 [P{"] U NZ[PJ'] from G leaves no
connected component with more than 2/3n vertices. Thus, there exist two paths
P{" and P} in G such that they are 2xshortest paths and the union of N3 [P}"]
and NZ[P}"] is a balanced separator for G.

5.3 Finding a Balanced Shortest-Paths—3-Hop-Neighborhood
Separator for G

In this section, we will improve the result of Section We will show that any
UDG G has two shortest paths P;” and Pj” such that the union of N2, [P]”] and
N [P}"] forms a balanced separator for G. Recall that, by a shortest path we
mean a hop-shortest path.

Let Py, P», P{, Py, P and Pj be the paths defined in Section Analogs
of paths P/ and Py’ of Section 52l will be obtained from P’ and PJ in a more
careful way (than in Section [52)). We use PROCEDURE 3 for this.

PROCEDURE 3. Handle imaginary points

Input: Path P € {P{’, Py} (containing still some imaginary points).

Output: Path P as a shortest path of G, with all imaginary points resolved.
Method: /* Break ties arbitrarily. The first vertex in P is the root r, a real vertex.*/

(1) Let [v1,---,vk] be the imaginary points in P in the order from r;

(2) FORi=1tok DO

(3) IF vertex c(v;) is adjacent to prevp(v;)
(c(v;) is always adjacent to nextp(v;), as it is shown later.)

(4) Replace v; with ¢(v;) in P;

(5) ELSE (It implies that vertex b(v;) is adjacent to both prevp(v;)
and nextp(v;), as it is shown later.)

(6) Replace v; with b(v;) in P;

(7) RETURN P

576 C. Yan, Y. Xiang, and F.F. Dragan

We call PROCEDURE 3 for both P/’ and Pj. Let the resulting paths be P;”
and Py, respectively. We can show that P;” and Py’ are shortest paths in G.
Now, for these paths P/ and PJ’, we have.

Theorem 3. The union of NA[P{"] and NE&[PY'] is a balanced separator for G
with 2/3-split, i.e., removal of NZ[P{"] U N&[P}'] from G leaves no connected
component with more than 2/3n vertices.

6 Application of Balanced Separators for UDGs

In this section, we show how one can use the above balanced separator theorem
for UDGs to construct for them collective tree spanners with low stretch and to
develop a compact and low delay routing labeling scheme. For this, we combine
strategies used in [BUGJI3]. The details can be found in the full version of this
paper. Here we list only the final results.

Theorem 4. Any unit disk graph G with n vertices and m edges admits a system
T(G) of at most 2logz o n + 2 collective tree (3,12)-spanners, i.e., for any two
vertices x and y in G, there exists a spanning tree T € T(G) with dr(x,y) <
3dg(z,y) + 12. Moreover, such a system T(G) can be constructed in O((C +
m)logn) time, where C is the number of crossings in G.

Corollary 1. Any unit disk graph G with n vertices admits a hop (3, 12)-spanner
with at most 2(n — 1)(logz o n + 1) edges.

Theorem 5. The family of n-vertex unit disk graphs admits an O(log®n) bit
(3,12)-approxzimate distance labeling scheme with O(logn) time distance decoder.

Theorem 6. The family of n-vertex unit disk graphs admits an O(log®n) bit
routing labeling scheme. The scheme has hop (3,12)-route-stretch. Once com-
puted by the sender in O(logn) time, headers never change, and the routing
decision is made in constant time per vertex.

In the journal version of the paper, we show also how to extend this bounded hop
route-stretch routing labeling scheme to a routing labeling scheme with bounded
length route-stretch.

References

1. Alber, J., Fiala, J.: Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. J. of Algorithms 52, 134-151 (2004)

2. Alzoubi, K., Li, X.-Y., Wang, Y., Wan, P.-J., Frieder, O.: Geometric spanners for
wireless ad hoc networks. IEEE Trans. on Par. and Distr. Syst. 14, 408-421 (2003)

3. Clark, B.N., Colbourn, C.J.: Unit Disk Graphs. Discrete Math. 86, 165-177 (1990)

4. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery
in ad hoc wireless networks. In: 3rd Internat. workshop on discr. algor. and meth-
ods for mobile computing and communications, pp. 48-55. ACM Press, New York
(1999)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

Compact and Low Delay Routing Labeling Scheme for Unit Disk Graphs 577

Dragan, F.F., Yan, C., Corneil, D.G.: Collective Tree Spanners and Routing in
AT-free Related Graphs. J. of Graph Algor. and Applic. 10(2), 97-122 (2006)
Dragan, F.F., Yan, C., Lomonosov, I.: Collective tree spanners of graphs. STAM J.
Discrete Math. 20, 241-260 (2006)

Fonseca, R., Ratnasamy, S., Zhao, J., Ee, C.T., Culler, D., Shenker, S., Stoica, I.:
Beacon vector routing: Scalable point-to-point routing in wireless sensornets. In:
2nd USENIX/ACM Symp. on Netw. Syst. Design and Implement (NSDI 2005)
(2005)

Fiirer, M., Kasiviswanathan, S.P.: Spanners for geometric intersection graphs. In:
Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 312-324.
Springer, Heidelberg (2007)

Fraigniaud, P., Gavoille, C.: Routing in Trees. In: Orejas, F., Spirakis, P.G., van
Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757-772. Springer, Heidelberg
(2001)

Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Geometric spanner for
routing in mobile networks. In: 2nd ACM international symposium on mobile ad
hoc networking & computing, Long Beach, CA, USA, October 04-05 (2001)

Gao, J., Zhang, L.: Well-separated pair decomposition for the unit-disk graph met-
ric and its applications. In: STOC 2003, pp. 483492 (2003)

Giordano, S., Stojmenovic, I.: Position based routing algorithms for ad hoc net-
works: A taxonomy. In: Ad Hoc Wireless Networking, pp. 103-136. Kluwer, Dor-
drecht (2004)

Gupta, A., Kumar, A., Rastogi, R.: Traveling with a Pez Dispenser (Or, Routing
Issues in MPLS). In: FOCS 2001, pp. 148-157 (2001)

Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless net-
works. In: Proceedings of the 6th ACM/IEEE MobiCom, pp. 243-254. ACM Press,
New York (2000)

Kleinberg, R.: Geographic routing using hyperbolic space. In: INFOCOM 2007,
pp. 1902-1909 (2007)

Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-hoc routing: of
theory and practice. In: PODC 2003, pp. 63-72. ACM Press, New York (2003)
Li, X.-Y.: Ad Hoc Wireless Networking. In: Li, X.-Y. (ed.) Applications of Com-
putational Geomety in Wireless Ad Hoc Networks, Kluwer, Dordrecht (2003)

Li, X.-Y., Wang, Y.: Geometrical Spanner for Wireless Ad Hoc Networks. In: Hand-
book of Approx. Algorithms and Metaheuristics. Chapmané&Hall/Crc, Boca Raton
(2006)

Lipton, R.J., Tarjan, R.E.: A Separator Theorem for Planar Graphs. STAM Journal
on Applied Mathematics 36, 177-189 (1979)

Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. STAM Mono-
graphs on Discrete Math. Appl. STAM, Philadelphia (2000)

Rao, A., Papadimitriou, C., Shenker, S., Stoica, I.: Geographical routing without
location information. In: MobiCom 2003, pp. 96-108 (2003)

Thorup, M.: Compact Oracles for Reachability and Approximate Distances in Pla-
nar Digraphs. In: FOCS, pp. 242-251 (2001)

Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA 2001, pp. 1-10 (2001)
Yan, C.: Approximating Distances in Complicated Graphs by Distances in Simple
Graphs With Applications. PhD Dissertation, Kent State University (2007), http://
www.ohiolink.edu/etd/send-pdf.cgi/Yan%20Chenyu.pdf 7kent1184639623

http://www.ohiolink.edu/etd/send-pdf.cgi/Yan%20Chenyu.pdf?kent1184639623
http://www.ohiolink.edu/etd/send-pdf.cgi/Yan%20Chenyu.pdf?kent1184639623

	Compact and Low Delay Routing Labeling Scheme for Unit Disk Graphs
	Introduction
	Notions and Notations
	Intersection Lemmas
	Balanced Separator for Restricted UDGs
	Balanced Separator for Arbitrary UDGs
	Building a Special Spanning Tree T of Gp
	Finding a Balanced 2Shortest-Paths—3-Hop-Neighborhood Separator for G
	Finding a Balanced Shortest-Paths—3-Hop-Neighborhood Separator for G

	Application of Balanced Separators for UDGs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

