Skip to main content

Connect the Dot: Computing Feed-Links with Minimum Dilation

  • Conference paper
Algorithms and Data Structures (WADS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5664))

Included in the following conference series:

Abstract

A feed-link is an artificial connection from a given location p to a real-world network. It is most commonly added to an incomplete network to improve the results of network analysis, by making p part of the network. The feed-link has to be “reasonable”, hence we use the concept of dilation to determine the quality of a connection.

We consider the following abstract problem: Given a simple polygon P with n vertices and a point p inside, determine a point q on P such that adding a feedlink \(\overline{pq}\) minimizes the maximum dilation of any point on P. Here the dilation of a point r on P is the ratio of the shortest route from r over P and \(\overline{pq}\) to p, to the Euclidean distance from r to p. We solve this problem in O(λ 7(n)logn) time, where λ 7(n) is the slightly superlinear maximum length of a Davenport-Schinzel sequence of order 7. We also show that for convex polygons, two feed-links are always sufficient and sometimes necessary to realize constant dilation, and that k feed-links lead to a dilation of 1 + O(1/k). For (α,β)-covered polygons, a constant number of feed-links suffices to realize constant dilation.

This research has been supported by the Netherlands Organisation for Scientific Research (NWO) under BRICKS/FOCUS grant number 642.065.503, under the project GOGO, and under project no. 639.022.707. B. Aronov has been partially supported by a grant from the U.S.-Israel Binational Science Foundation, by NSA MSP Grant H98230-06-1-0016, and NSF Grant CCF-08-30691. M. Buchin is supported by the German Research Foundation (DFG) under grant number BU 2419/1-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P., Sharir, M., Shor, P.: Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences. Journal of Combinatorial Theory, Series A 52, 228–274 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aronov, B., Buchin, K., Buchin, M., Jansen, B., de Jong, T., van Kreveld, M., Löffler, M., Luo, J., Silveira, R.I., Speckmann, B.: Feed-links for network extensions. In: Proc. 16th International Symposium on Advances in Geographic Information Systems, pp. 308–316 (2008)

    Google Scholar 

  3. Bose, P., Dujmović, V.: A note on the perimeter of (α, β)-covered objects (manuscript, 2009)

    Google Scholar 

  4. de Berg, M.: Linear size binary space partitions for uncluttered scenes. Algorithmica 28, 353–366 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Berg, M., van der Stappen, A., Vleugels, J., Katz, M.: Realistic input models for geometric algorithms. Algorithmica 34, 81–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Jong, T., Tillema, T.: Transport network extensions for accessibility analysis in geographic information systems. In: Proc. AfricaGIS (2005)

    Google Scholar 

  7. Ebbers-Baumann, A., Grüne, A., Klein, R.: The geometric dilation of finite point sets. Algorithmica 44, 137–149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Efrat, A.: The complexity of the union of (α, β)-covered objects. SIAM Journal on Computing 34, 775–787 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Erickson, J.: Local polyhedra and geometric graphs. Computational Geometry: Theory and Applications 31, 101–125 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Farshi, M., Giannopoulos, P., Gudmundsson, J.: Finding the best shortcut in a geometric network. In: Proc. 21st Symposium on Computational Geometry, pp. 327–335 (2005)

    Google Scholar 

  11. Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hershberger, J.: Finding the upper envelope of n line segments in O(n logn) time. Information Processing Letters 33, 169–174 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Langerman, S., Morin, P., Soss, M.: Computing the maximum detour and spanning ratio of planar paths, trees, and cycles. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 250–261. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Narasimhan, G., Smid, M.: Approximating the stretch factor of Euclidean graphs. SIAM Journal on Computing 30, 978–989 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  16. Sharir, M., Agarwal, P.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  17. van der Stappen, A.F., Overmars, M.H., de Berg, M., Vleugels, J.: Motion planning in environments with low obstacle density. Discrete & Computational Geometry 20, 561–587 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. van Kreveld, M.: On fat partitioning, fat covering and the union size of polygons. Computational Geometry: Theory and Applications 9, 197–210 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aronov, B. et al. (2009). Connect the Dot: Computing Feed-Links with Minimum Dilation. In: Dehne, F., Gavrilova, M., Sack, JR., Tóth , C.D. (eds) Algorithms and Data Structures. WADS 2009. Lecture Notes in Computer Science, vol 5664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03367-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03367-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03366-7

  • Online ISBN: 978-3-642-03367-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics