Approximating Transitive Reductions for
Directed Networks

Piotr Berman', Bhaskar DasGupta?, and Marek Karpinski®

! Pennsylvania State University, University Park, PA 16802, USA
berman@cse.psu.edu
Research partially done while visiting Dept. of Computer Science, University of Bonn
and supported by DFG grant Bo 56/174-1

2 University of Illinois at Chicago, Chicago, IL 60607-7053, USA

dasgupta@cs.uic.edu
Supported by NSF grants DBI-0543365, 11S-0612044 and I1S-0346973
3 University of Bonn, 53117 Bonn, Germany
marek@cs.uni-bonn.de
Supported in part by DFG grants, Procope grant 31022, and Hausdorff Center

research grant EXC59-1

Abstract. We consider minimum equivalent digraph problem, its maz-
imum optimization variant and some non-trivial extensions of these two
types of problems motivated by biological and social network appli-
cations. We provide g-approximation algorithms for all the minimiza-
tion problems and 2-approximation algorithms for all the mazimization
problems using appropriate primal-dual polytopes. We also show lower
bounds on the integrality gap of the polytope to provide some intuition
on the final limit of such approaches. Furthermore, we provide APX-
hardness result for all those problems even if the length of all simple
cycles is bounded by 5.

1 Introduction

Finding an equivalent digraph is a classical computational problem (cf. [13]).
The statement of the basic problem is simple. For a digraph G = (V, E), we

use the notation u = v to indicate that E contains a path from u to v and

the transitive closure of E is the relation u 2 v over all pairs of vertices of V.
Then, the digraph (V, A) is an equivalent digraph for G = (V,E) if (a) AC E
and (b) transitive closures of A and E are the same. To formulate the above as
an optimization problem, besides the definition of a valid solution we need an
objective function. Two versions are considered:

— MIN-ED, in which we minimize |A|, and
— MaX-ED, in which we maximize |E — A].

If we skip condition (a) we obtain the transitive reduction problem which was
optimally solved in polynomial time by Aho et al. [1]. These names are a bit
confusing because one would expect a reduction to be a subset and an equivalent
set to be unrestricted, but transitive reduction was first discussed when the name

2 Piotr Berman et al.

minimum equivalent digraph was already introduced [13]. This could motivate
renaming the equivalent digraph as a strong transitive reduction [14].

Further applications in biological and social networks have recently intro-
duced the following non-trivial extensions of the above basic versions of the
problems. Below we introduce these extensions, leaving discussions about their
motivations in Section 1.3 and in the references [2, 3,5, 8].

The first extension is the case when we specify a subset D C E of edges
which have to be present in every valid solution. It is not difficult to see that
this requirement may change the nature of an optimal solution. We call this
problem as MIN-TR; or MAX-TR; depending on whether we wish to minimize
|A] or maximize |E — A|, respectively.

A further generalization can be obtained when each edge e has a character
l(e) € Zy, where edge characters define the character of a path as the sum
modulo 2. In a valid solution we want to have paths with every character that
is possible in the full set of edges. This concept than be applied to any group,
but our method works only for Z, where p is prime. Formally,

O 0: B Zy;
O apath P = (ug,uq,...,u) has character ¢/(P) = Zle l(u;—1,u;) (mod p);
O Closuree(E) = {(u,v,q) : 3P in E from u to v such that {(P) = ¢};

Then we generalize the notion of “preserving the transitive closure” as fol-
lows: (V, A) is a p-ary transitive reduction of G = (V, E) with a required subset
D if D C ACE and Closurey(A) = Closurey(E).

Our two objective functions, namely minimizing |A| or maximizing |E — A|,
define the two optimization problems MIN-TR, and MAX-TR,, respectively.

For readers convenience, we indicate the relationships for the various versions
below where A < B indicates that problem B is a proper generalization of
problem A:

MIN-ED < MIN-TR; < MIN-TR,,
MaX-ED < MaAx-TR; < Max-TR,

1.1 Related Earlier Results

The initial work on the minimum equivalent digraph by Moyles and Thomson [13]
described an efficient reduction to the case of strongly connected graphs and an
exact exponential time algorithm for the latter.

Several approximation algorithms for MIN-ED have been described in the
literature, most notably by Khuller et al. [11] with an approximation ratio of
1.617 4 ¢ and by Vetta [15] with a claimed approximation ratio of 3. The latter
result seems to have some gaps in a correctness proof.

Albert et al. [2] showed how to convert an algorithm for MIN-ED with ap-
proximation ratio r to an algorithm for MIN-TR; with approximation ratio
3 —2/r. They have also proved a 2-approximation for MIN-TR,. Other heuris-
tics for these problems were investigated in [3, 8].

Transitive Reductions for Directed Networks 3

On the hardness side, Papadimitriou [14] indicated that the strong transi-
tive reduction is NP-hard, Khuller et al. proved it formally and also showed its
APX-hardness. Motivated by their cycle contraction method in [11], they were
interested in the complexity of the problem when there is an upper bound -~y
on the cycle length; in [10] they showed that MIN-ED is solvable in polynomial
time if v = 3, NP-hard if v = 5 and MAX-SNP-hard if v = 17.

Finally, Frederickson and JaJa [7] provides a 2-approximation for a weighted
generalization of MIN-ED based on the works of [6,9].

1.2 Results in this Paper

Problem names Our results Previous best (if any)
Result [Ref
MIN-ED,MIN-TR1, 1.5-approx. 1.5-approx. for MIN-ED [[15]
MIN-TR, MAX-SNP-hard for v = 5| 1.78-approx. for MIN-TR; | [2]

2 4 o(1)-approx. for MIN-TR,,| [2]
MAX-SNP-hard for v = 17 |[10]
NP-hard for v =5 [10]
MaX-ED,MAX-TRy, 2-approx. NP-hard for v =5 [10]
Max-TR, MAX-SNP-hard for v =5

Table 1. Summary of our results. The parameter v indicates the maximum cycle
length and the parameter p is prime. Our results in a particular row holds for
all problems in that row. We also provide a lower bound of 4/3 and 3/2 on the
integrality gap of the polytope used in our algorithms for MIN-ED and MAXx-ED,
respectively (not mentioned in the table).

Table 1 summarizes our results. We briefly discuss the results below.

We first show a 1.5-approximation algorithm for MIN-ED that can be ex-
tended for MIN-TR;. Our approach is inspired by the work of Vetta [15], but
our combinatorial approach makes a more explicit use of the primal-dual for-
mulation of Edmonds and Karp, and this makes it much easier to justify edge
selections within the promised approximation ratio.

Next, we show how to modify that algorithm to provide a 1.5-approximation
for MIN-TR;. Notice that one cannot use a method for MIN-ED as a “black
box” because we need to control which edges we keep and which we delete.

We then design a 2-approximation algorithm MAX-TR;. Simple greedy al-
gorithms that provides a constant approximation for MIN-ED, such as delete
an unnecessary edge as long as one exists, would not provide any bounded ap-
proximation at all since it is easy to provide an example of MAX-ED instance
with n nodes and 2n — 2 edges in which greedy removes only one edge, and the
optimum solution removes n — 2 edges. Other known algorithms for MIN-ED
are not much better in the worst case when applied to MAX-ED.

Next, we show that for a prime p we can transform a solution of MIN-
TR, /MaX-TR; to a solution of MIN-TR,,/MAX-TR,, by a single edge inser-
tion per strongly connected component, thereby obtaining 1.5-approximation

4 Piotr Berman et al.

for MIN-TR,, and a 2-approximation for MAX-TR,, (we can compensate for an
insertion of a single edge, so we do not add a o(1) to the approximation ratio).

Finally, We provide an approximation hardness proof for MIN-ED and MAX-
ED when ~, the maximum cycle length, is 5. This leaves unresolved only the
case of vy =4.

1.3 Some Motivations and Applications

Application of MIN-ED: Connectivity Requirements in Computer Networks.
Khulleret al. [10] indicated applications of MIN-ED to design of computer net-
works that satisfy given connectivity requirements. With preexisting sets of con-
nections, this application motivates MIN-TR; (cf. [12]).

Application of MIN-TR;: Social Network Analysis and Visualization.
MIN-TR; can be applied to social network analysis and visualization. For ex-
ample, Dubois and Cécile [5] applies MIN-TR; to the publicly available (and
famous) social network built upon interaction data from email boxes of Enron
corporation to study useful properties (such as scale-freeness) of such networks
as well as help in the visualization process. The approach employed in [5] is
the straightforward greedy approach which, as we have discussed, has inferior
performance, both for MIN-TR; and MAX-TR;.

Application of MIN-TRs: Inferring Biological Signal Transduction Networks.
In the study of biological signal transduction networks two types of interactions
are considered. For example, nodes can represent genes and an edge (u, v) means
that gene u regulates gene v. Without going into biological details, regulates may
mean two different things: when v is expressed, i.e. molecules of the protein
coded by u are created, the expression of v can be repressed or promoted. A path
in this network is an indirect interaction, and promoting a repressor represses,
while repressing a repressor promotes. Moreover, for certain interactions we have
direct evidence, so an instance description includes set D C E of edges which
have to be present in every valid solution. The MIN-TRy problem allows to
determine the sparsest graph consistent with experimental observations; it is a
key part of the network synthesis software described in [3, 8] and downloadable
from http://wuw.cs.uic.edu/~dasgupta/network-synthesis/.

2 Overview of Our Algorithmic Techniques

Moyles and Thompson [13] showed that MIN-ED can be reduced in linear time
to the case when the input graph (V) E) is strongly connected, therefore we will
assume that G = (V, E) is already strongly connected. In Section 2.5 we will use
a similar result obtained for MIN-TR,, and MAX-TR,, obtained in [2]. We use
the following additional notations.

G = (V, E) is the input digraph;
(

:LU) {(u,v) eE: wgU&veU}
—oU)={(u,v) €E: uelU&vgU};

Transitive Reductions for Directed Networks 5

— scca(u) is the strongly connected component containing vertex u in the
digraph (V, A);
— Tu] is the node set of the subtree with root u (of a rooted tree T).

A starting point for our approximation algorithms for both MiN-TR; and MAX-
TR, is a certain polytope for them as described below.

2.1 A Primal-Dual LP Relaxation for MIN-TR; and Max-TR;,

The minimum cost rooted out-arborescence* problem is defined as follows. We
are given a weighted digraph G = (V, E) with a cost function ¢ : E — Ry and
root node r € V. A valid solution is A C F such that in (V, A) there is a path
from 7 to every other node and we need to minimize) ., c(e). The following
exponential-size LP formulation for this was provided by Edmonds and Karp.
Let 2 = (..., x.,...) € {0,1}/Fl be the 0-1 selection vector of edges with z, = 1
if the edge e being selected and x. = 0 otherwise. Abusing notations slightly, let
1(U) € {0,1}/F1 also denote the 0-1 indicator vector for the edges in +(U). Then,
the LP formulation is:

(primal P1)
minimize c - x subject to
x>0
W(U)-z>1foralUst. OCUCVandr gU (1)

Edmonds [6] and Karp [9] showed that the above LP always has an integral
optimal solution and that we can find it in polynomial-time.

From now on, by a requirement we mean a set of edges R that any valid
solution must intersect; in particular, it means that the LP formulation has
the constraint Rz > 1. We modify P1 to an LP formulation for MIN-ED by
setting ¢ = 1 in (1) and removing “and r € U” from the condition (so we have
a requirement for every non-empty ¢(U)). The dual program of this LP can be
constructed by having a vector y that has a coordinate yy; for every 0 C U C V;
both the primal and the dual is written down below for clarity:

(primal P2) (dual D2)
minimize 1 - x subject to maximize 1 -y subject to
x>0 y=>0

W(U)-x>1forallUst. OCUCV Yecuryyut(U) < lforallee E

We can change P2 into the LP formulation for MAX-ED by replacing the
objective to “maximize 1-(1—x)”. and the dual is changed accordingly to reflect
this change. Finally, we can extend P2 to an LP formulation for MIN-TR; or
Max-TR; by adding one-edge requirements {e} (and thus inequality z, > 1) for
each e € D where D is the set of edges that have to be present in a valid solution.
Abusing notations slightly, we will denote all these polytopes by P2 when it is
clear from the context.

4 The corresponding in-arborescence problem must have a path from every node to r.

6 Piotr Berman et al.

EEBNSEEEN

Fig. 1. The left panel shows an example of a lower bound solution L, the right panel
shows an example of an eventual solution.

2.2 Using the Polytope to Approximate MIN-TR;
For MIN-TR;, our goal is to prove the following theorem.

Theorem 1. There is a polynomial time algorithm for MIN-TR; that produces
a solution with at most 1.50PT — 1 edges, where OPT is the number of edges
i an optimum solution.

We mention the key ideas in the proof in the next few subsections.

A Combinatorial Lower Bound L for MIN-TR;: We will form a set of
edges L that satisfies |L| < OPT by solving an LP P3 derived from P2 by
keeping a subset of requirements (hence, with the optimum that is not larger)
and which has an integer solution (hence, it corresponds to a set of edges L).
We form an P3 by keeping only those requirements Rz > 1 of P2 that for some
node u satisfy R C ¢(u) or R C o(u). To find the requirements of P3 efficiently,
for each u € V we find strongly connected components of V' — {u}. Then,

(a) for every source component C' have requirement +(C) C o(u);
(b) for every sink component C' have requirement o(C) C ¢(u);
(c) if we have one edge requirement {e} C R we remove R.

After (c) the requirements of P3 contained in a particular ¢(u) or o(u) are
pairwise disjoint, hence requirements of P3 form a bipartite graph in which con-
nections have the form of shared edges. If we have m requirements, a minimum
solution can be formed by finding a maximum matching in this graph, say of
size a, and then greedily adding m — 2a edges. See Figure 1 for an illustration
of calculation of L.

Converting L to a Valid Solution of MIN-TR;: We will convert L into a
valid solution. In a nutshell, we divide L into strongly connected components of
(V, L) which we will call objects. We merge objects into larger strongly connected
components, using amortized analysis to attribute each edge of the resulting
solution to one or two objects. To prove that we use at most 1.5|L| — 1 edges, an
object with a edges of L can be responsible for at most 1.5a edges, and in one
case, the “root object”, for at most a edges.

Transitive Reductions for Directed Networks 7
Drs(u)
{ COUNTER «—COUNTER+1
NUMBER[u] < LOWDONE[u] «LOWCANDO[u] «COUNTER
for each edge (u,v) // scan the adjacency list of u
ifNUMBER[v] = 0
INSERT(T, (u, v)) // (u,v) is a tree edge
Drs(v)
ifLowDONE[u] > LOWDONE[v]
LowDONE[u] < LOWDONE[v]
ifLowCANDO[u] > LowCANDO[v]
LowCANDoO[u] «—LowCANDO[v]
LowEDGE[u] < LOWEDGE[v]
elseifLowCANDO[u] > NUMBER/[]
LowCANDO[u] <~ NUMBER[v]
LOWEDGE[u] < (u,v)
// the final check: do we need another back edge?
ifLowDONE[u] = NUMBER[u] and u # r
INSERT(B,LOWEDGE[u]) // LOWEDGE[u] is a back edge
LowDONE[u] «LowCANDO[u]

}

T«— B« [

for every node u
NUMBER[u] < 0

COUNTER « 0

Drs(r)

Fig. 2. Drs for finding an equivalent digraph of a strongly connected graph

Starting Point: the DFS One can find an equivalent digraph using depth first
search starting at any root node r. Because we operate in a strongly connected
graph, only one root call of the depth first search is required. This algorithm (see
Fig. 2) mimics Tarjan’s algorithm for finding strongly connected components and
biconnected components. As usual for depth first search, the algorithm forms a
spanning tree T' in which we have an edge (u,v) if and only if Drs(u) made a
call DFs(v). The invariant is

(A) if DFs(u) made a call DFs(v) and DFs(v) terminated then
T[v] C sceryp(u).

(A) implies that (V,TUB) is strongly connected when DFs(r) terminates. More-
over, in any depth first search the arguments of calls that already have started
and have not terminated yet form a simple path starting at the root. By (A),
every node already visited is, in (V,T U B), strongly connected to an ancestor
who has not terminated. Thus, (A) implies that the strongly connected compo-
nents of (V, T U B) form a simple path. This justifies our convention of using the
term back edge for all non-tree edges.

To prove the invariant, we first observe that when DFs(u) terminates then
LowCANDO[u] is the lowest number of an end of an edge that starts in T'[u).

Application of (A) to each child of v shows that T[v] C sceryp(v) when we
perform the final check of DFs(v).

8 Piotr Berman et al.

If the condition of the final check is false, we already have a B edge from T'[v]
to an ancestor of u, and thus we have a path from v to v in T'U B. Otherwise,
we attempt to insert such an edge. If LowCANDO[v] is “not good enough” then
there is no path from T'[v] to u, a contradiction with the assumption that the
graph is strongly connected.

The actual algorithm is based on the above D¥s, but we also need to alter
the set of selected edges in some cases.

An Overview of the Amortized Scheme

Objects, Credits, Debits The initial solution L to P3 is divided into objects,
namely the strongly connected components of (V,L). L-edges are either inside
objects, or between objects. We allocate L-edges to objects, and give 1.5 for each.
In turn, an object has to pay for solution edges that connect it, for a T-edge
that enters this object and for a B-edge that connects it to an ancestor. Each
solution edge costs 1. Some objects have enough money to pay for all L-edges
inside, so they become strongly connected, and two more edges of the solution,
to enter and to exit. We call them rich. Other objects are poor and we have to
handle them somehow.

Allocation of L-Edges to Objects

— L-edge inside object A: allocate to A;
— from object A: call the first L-edge primary, and the rest secondary;
e primary L-edge A — B, |A] =1: 1.5 to 4;
e primary L-edge A — B, |A| > 1: 1 to A, and 0.5 to B;
e secondary L-edge A — B (while there is a primary L-edge A — O): if
|A| > 1, 1.5 to B, otherwise 0.5 to each of A, B and C.

When is an Object A rich?

1. A is the root object, no payment for incoming and returning edges;

2. |A] > 4: it needs at most L-edges inside, plus two edges, and it has at least
0.5]|A] for these two edges;

3. if |A] > 1 and an L-edge exits A: it needs at most L-edges inside, plus two
edges, and it has at least (1 + 0.5|A|) for these two edges;

4. if |A| = 1,3 and a secondary L-edge enters A;

5. if |A| = 1,3 and a primary L-edge enters A from some D where |D| > 1.

To discuss a poor object A, we call it a path node, digons or a triangles when
|A] = 1,2, or 3 respectively.

Guiding Drs For a rich object A, we decide at once to use L-edges inside
A in our solution, and we consider it in DFS as a single node, with combined
adjacency list. This makes point (1) below moot. Otherwise, the preferences are
in the order: (1) L-edges inside the same object; (2) primary L-edges; (3) other
edges.

The analysis of the balance of poor objects for enough credits is somewhat
complicated, especially since we desire to extend the same approach from MIN-
ED to MIN-TR;. The details are available in the full version of the paper.

Transitive Reductions for Directed Networks 9

2.3 Using the Polytope to Approximate MAX-TR;

Theorem 2. There is a polynomial time algorithm for MAX-TR; that produces
a solution set of edges H with |E — H| > $OPT + 1, where OPT = |E — H| if
H is an optimum solution.

Proof. (In the proof, we add in parenthesis the parts needed to prove 0.50 PT +
1 bound rather than 0.50PT.) First, we determine the necessary edges: e is
necessary if e € D or {e} = ¢(S) for some node set S. (If there are any cycles of
necessary edges, we replace them with single nodes.)

We give a cost of 0 to the necessary edges and a cost of 1 for the remaining
ones. We set z, = 1 if e is a necessary edge and x. = 0.5 otherwise. This is a
valid solution for the fractional relaxation of the problem as defined in P1.

Now, pick any node r. (Make sure that no necessary edges enter r.) Consider
the out-arborescence problem with r as the root. Obviously, edges of cost 0 can
be used in every solution. An optimum (integral) out-arborescence T' can be
computed in polynomial time by the greedy heuristic in [9]; this algorithm also
provides a set of cuts that forms a dual solution.

Suppose that m—+1 edges of cost 1 are not included in T, then no solution can
delete more than m edges (because to the cuts collected by the greedy algorithm
we can add ¢(r)). Let us reduce the cost of edges in T" to 0. Our fractional solution
is still valid for the in-arborescence, so we can find the in-arborescence with at
most (m + 1)/2 edges that still have cost 1. Thus we delete at least (m + 1)/2
edges, while the upper bound is m.

To assure deletion of at least k/2+ 1 edges, where k is the optimum number,
we can try in every possible way one initial deletion. If the first deletion is correct,
subsequently the optimum is &k — 1 and our method finds at least (k — 1+ 1)/2
deletions, so together we have at least k/2 + 1. g

2.4 Some Limitations of the Polytope

We also show an inherent limitation of our approach by showing an integrality
gap of the LP relaxation of the polytope P2 for MIN-TR; and MAX-TRj.

Lemma 1. The LP formulation P2 for MIN-ED and MAX-ED has an integral-
ity gap of at least 4/3 and 3/2, respectively.

To prove the lemma, we 1 Yo Yo Yo ,~_ Yo 2
use a graph with 2n 4 2 ﬁ i ;4 :) » .
nodes and 4n + 2 edges; : 7 5 ;
Fig. 3 shows an example 1!2» ;O/Z—>O {2 /12 /2
A A A 2) 1,

with n = 5. This graph has
no cycles of five or more
edges while every cut has at
least 2 incoming and 2 out-
going edges. For MIN-ED, one could show that the optimal fractional and inte-
gral solutions of the polytope P2 are 2n + 1 and (8n + 8)/3, respectively; the
claim for MAX-ED also follows from these bounds.

Fig. 3. A graph for the integrality gap of the poly-
tope. The fractional solution is indicated.

10 Piotr Berman et al.

2.5 Approximating MIN-TR, and MaX-TR, for Prime p

We will show how to transform our approximation algorithms for MIN-TR;
and MIN-TR; into approximation algorithms for MIN-TR,, and MAX-TR,, with
ratios 1.5 and 2 respectively. In a nutshell, we can reduce the approximation
in the general case the case of a strongly connected graph, and in a strongly
connected graph we will show that a solution to MIN-TR; (MAX-TR;) can be
transformed into a solution to MIN-TR,, (MAX-TR,) by adding a single edge,
and in polynomial time we can find that edge.

In turn, when we run approximation algorithms within strongly connected
components, we obtain the respective ratio even if we add one extra edge.

Let G be the input graph. The following proposition says that it suffices to
restrict our attention to strongly connected components of G®. (One should note
that the algorithm implicit in this Proposition runs in time proportional to p.)

Proposition 3 [2] Suppose that we can compute a p-approzimation of TR,
on each strongly connected component of G for some p > 1. Then, we can also
compute a p-approzimation of TR, on G.

The following characterization of scc’s of G appear in [2].

Lemma 2. [2] Every strongly connected component U C V is one of the fol-
lowing two types:

(Multiple Parity Component) {q : (u,v,q) € Closure,(E(U))} = Z, for
any two vertices u,v € U;

(Single Parity Component) |{q: (u,v,q) € Closure,(E(U))}| =1 for any
two vertices u,v € U.

Based on the above lemma, we can use the following approach. Consider
an instance (V, E,¢, D) of MIN-TR,,. For every strongly connected component
U C V we consider an induced instance of MIN-TR;, (U, E(U), DNU). We find
an approximate solution Ay that contains an out-arborescence Ty with root r.
We label each node u € U with ¢(u) = ¢(P,) where P, is the unique path in Ty
from r to u.

Now for every (u,v) € E(U) we check if ¢(v) = ¢(u) + ¢(u,v) mod p.

If this is true for every e € E(U) then U is a single parity component.
Otherwise, we pick a single edge (u,v) violating the test and we insert it to Ay,
thus assuring that (U, Ay) becomes a multiple parity component.

2.6 Inapproximability of MIN-ED and MAX-ED

Theorem 4. Let v be the length of the longest cycle in the given graph. Then,
both 5-MIN-ED and 5-MAX-ED are MAX-SNP-hard even if v = 5.

® The authors in [2] prove their result only for MIN-TR,,, but the proofs work for
MAXx-TR, as well.

Transitive Reductions for Directed Networks 11

Proof. We will use a single approximation reduction that reduces 2REG-MAX-
SAT to MIN-ED and MAX-ED with v = 5.

In MAX-SAT problem the input is a set S of disjunctions of literals, a valid
solution is an assignment of truth values (a mapping from variables to {0,1}),
and the objective function is the number of clauses in S that are satisfied. 2REG-
MAX-SAT is MAX-SAT restricted to sets of clauses in which every variable x
occurs exactly four times (of course, if it occurs at all), twice as literal 2 and
twice as literal Z. This problem is MAX-SNP hard even if we impose another
constraint, namely that each clause has exactly three literals [4].

Consider an instance S of 2REG-MAX-SAT with n variables and m clauses.
We construct a graph with 1+ 6n + m nodes and 14n + m edges. One node is h,
the hub. For each clause ¢ we have node c. For each variable x we have a gadget
G, with 6 nodes, two switch nodes labeled x, two nodes that are occurrences of
literal = and two nodes that are occurrences of literal 7.

We have the following edges: (h,z*) for
every switch node, (¢, h) for every clause
node, (,¢) for every occurrence [of a lit-
eral in clause ¢, while each node gadget is
connected with 8 edges as shown in Fig. 4.

We show that

O if we can satisfy k clauses, then we have
a solution of MIN-ED with 8n+2m —k
nodes, which is also a solution of MAX-
ED that deletes 6n — m + k edges;

O if we have a solution of MIN-ED with
8n+2m — k edges, we can show a solu-
tion of 2REG-MAX-SAT that satisfies
k clauses.

Fig. 4. Illustration of our reduc-
tion. Marked edges are necessary.
Dash-marked edges show set A,

To show [, we take a truth assignment
and form an edge set as follows: include all
edges from h to switch nodes (2n edges)
and from clauses to h (m edges). For a
variable = assigned as true pick set A,
of 6 edges forming two paths of the form
(x*, T, z, c), where c is the clause where lit-
eral x occurs, and if x is assigned false, we
pick set Az of edges from the paths of the
form (z*,2,%,c) (6n edges). At this point,
the only nodes that are not on cycles in-

that we can interpret it as x =true.
If some 4 clause nodes are not
reached (i.e., the corresponding
clause is not satisfied) then we need
to add k extra edges. Thus, k un-
satisfied clauses correspond to 8n+
m + k edges being used (6n — k
deleted) and k satisfied clauses cor-
respond to 8n+2m — k edges being
used (6n +m — k deleted).

cluding h are nodes of unsatisfied clauses, so for each unsatisfied clause ¢ we
pick one of its literal occurrences, ! and add edge (I,¢) (m — k edges).
The proof of O will appear in the full version. O

Remark 1. Berman et al. [4] have a randomized construction of 2REG-MAX-
SAT instances with 90n variables and 176n clauses for which it is NP-hard to

12

Piotr Berman et al.

tell if we can leave at most en clauses unsatisfied or at least (1 —e)n. The above
construction converts it to graphs with (14 x 90 + 176) edges in which it is
NP-hard to tell if we need at least (8 x 90 4+ 176 + 1 — €)n edges or at most
(8 x 90 + 176 + £)n, which gives an inapproximability bound of 1 + 1/896 for
MIN-ED and 1 + 1/539 for MAX-ED.

Acknowledgments. The authors thank Samir Khuller for useful discussions.

References

1.

2.

10.

11.

12.

13.

14.

15.

A. Aho, M. R. Garey and J. D. Ullman. The transitive reduction of a directed
graph, SIAM Journal of Computing, 1 (2), 131-137, 1972.

R. Albert, B. DasGupta, R. Dondi and E. Sontag. Inferring (Biological) Signal
Transduction Networks via Transitive Reductions of Directed Graphs, Algorith-
mica, 51 (2), 129-159, June 2008

R. Albert, B. DasGupta, R. Dondi, S. Kachalo, E. Sontag, A. Zelikovsky and
K. Westbrooks. A Novel Method for Signal Transduction Network Inference from
Indirect Experimental Evidence, Journal of Computational Biology, 14 (7), 927-949,
2007.

P. Berman, M. Karpinski and A. D. Scott. Approximation Hardness of Short
Symmetric Instances of MAX-3SAT, Electronic Colloquium on Computational
Complexity, Report TRO03-049, 2003, available at http://eccc.hpi-web.de/
eccc-reports/2003/TR03-049/index . html.

V. Dubois and C. Bothorel. Transitive reduction for social network analysis and
visualization, IEEE/WIC/ACM International Conference on Web Intelligence, 128-
131, 2005.

J. Edmonds. Optimum Branchings, Mathematics and the Decision Sciences, Part
1, G. B. Dantzig and A. F. Veinott Jr. (eds.), Amer. Math. Soc. Lectures Appl.
Math., 11, 335-345, 1968.

G. N. Frederickson and J. JaJa. Approzximation algorithms for several graph aug-
mentation problems, SIAM Journal of Computing, 10 (2), 270-283, 1981.

S. Kachalo, R. Zhang, E. Sontag, R. Albert and B. DasGupta, NET-SYNTHESIS:
A software for synthesis, inference and simplification of signal transduction net-
works, Bioinformatics, 24 (2), 293-295, January 2008.

R. M. Karp. A simple derivation of Edmonds’ algorithm for optimum branching,
Networks, 1, 265-272, 1972.

S. Khuller, B. Raghavachari and N. Young. Approxzimating the minimum equivalent
digraph, SIAM Journal of Computing, 24(4), 859-872, 1995.

S. Khuller, B. Raghavachari and N. Young. On strongly connected digraphs with
bounded cycle length, Discrete Applied Mathematics, 69 (3), 281-289, 1996.

S. Khuller, B. Raghavachari and A. Zhu. A uniform framework for approximating
weighted connectivity problems, 19th Annual ACM-SIAM Symposium on Discrete
Algorithms, 937-938, 1999.

D.M. Moyles and G.L. Thompson, Finding a minimum equivalent of a digraph,
JACM, 16 (3), 455-460, 1969.

C. Papadimitriou, Computational Complexity, Addison-Wesley, New York, 1994,
page 212.

A. Vetta. Approzimating the minimum strongly connected subgraph via a matching
lower bound, 12th ACM-SIAM Symposium on Discrete Algorithms, 417-426, 2001.

