
Succinct Orthogonal Range Search Structures on

a Grid with Applications to Text Indexing?

Prosenjit Bose1, Meng He2, Anil Maheshwari1, and Pat Morin1

1 School of Computer Science, Carleton University, Canada, {jit, anil,
morin}@cg.scs.carleton.ca

2 Cheriton School of Computer Science, University of Waterloo, Canada,
mhe@uwaterloo.ca

Abstract. We present a succinct representation of a set of n points on
an n × n grid using n lg n + o(n lg n) bits3 to support orthogonal range
counting in O(lg n/ lg lg n) time, and range reporting in O(k lg n/ lg lg n)
time, where k is the size of the output. This achieves an improvement on
query time by a factor of lg lg n upon the previous result of Mäkinen and
Navarro [15], while using essentially the information-theoretic minimum
space. Our data structure not only can be used as a key component in
solutions to the general orthogonal range search problem to save storage
cost, but also has applications in text indexing. In particular, we apply
it to improve two previous space-efficient text indexes that support sub-
string search [7] and position-restricted substring search [15]. We also use
it to extend previous results on succinct representations of sequences of
small integers, and to design succinct data structures supporting certain
types of orthogonal range query in the plane.

1 Introduction

The two-dimensional orthogonal range search problem is a fundamental prob-
lem in computational geometry. In this problem, we store a set, N , of points
in a data structure so that given a query rectangle R, information about the
points in R can be retrieved efficiently. There are two common types of queries:
orthogonal range counting queries and orthogonal range reporting queries. An
orthogonal range counting query returns the number of points in N ∩ R, and
an orthogonal range reporting query returns these points. The orthogonal range
search problem has applications in many areas of computer science, including
databases and computer graphics, and thus has been studied extensively [11, 6,
17, 1, 16]. Many trade-offs for this problem have been achieved. For example, for
the two-dimensional range reporting query, there are data structures achieving
the optimal O(lg n + k) query time using O(n lgε n) words of space, where k is
the size of the output and 0 < ε < 1 [1], and structures of linear space that

? This work was supported by NSERC of Canada. The work was done when the second
author was in School of Computer Science, Carleton University, Canada.

3 lg n denotes log
2
n.

1



answer queries in O(lg n + k lgε n) time [6]. For a recent summary of different
results on orthogonal range search, see [16].

In this paper, we mainly study the orthogonal range search problem in two-
dimensional rank space, i.e. on an n × n grid, where n is the size of the point
set. The general orthogonal range search problem in which the points are real
numbers can be reduced to this problem using a standard approach [11]. Thus,
solutions to the general range search problem are often based on range search
structures in the rank space [11, 1]. For example, one key component for the
data structure achieving the optimal O(lg n+k) query time for orthogonal range
reporting by Alstrup et al. [1] is a data structure supporting orthogonal range
reporting in the rank space in O(lg lg n+k) time using O(n lgε n) words of space.

More recently, the orthogonal range search problem on an n × n grid was
studied to design succinct data structures, and in particular succinct text indexes.
Succinct data structures provide solutions to reduce the storage cost of modern
applications that process huge amounts of data, such as textual data in databases
and on the World Wide Web, geometric data in GIS systems, and genomic
data in bioinformatics applications. They were first proposed by Jacobson [14]
to encode bit vectors, (unlabeled) trees and planar graphs using space close
to the information-theoretic lower bound, while supporting efficient navigation
operations in them. For example, Jacobson showed how to represent a tree on
n nodes using 2n + o(n) bits, so that the parent and the children of a node can
be efficiently located. The obvious approach uses 3n words, which is about 96
times as much as the space required for the succinct representation on a 64-bit
machine. This approach was also successfully applied to various other abstract
data types, including dictionaries [18], strings [13, 2, 3], binary relations [2, 3] and
labeled trees [12, 9, 2, 3]. For orthogonal range search in rank space, Mäkinen and
Navarro [15] designed a succinct data structure that encodes the point set using
n lg n + o(n lg n) bits to support orthogonal range counting in O(lg n) time and
range reporting in O(k lg n) time. This space cost is close to the information-
theoretic minimum, but their structure requires that there does not exist two
points in the set that has the same coordinate in one of the two dimensions.

The above succinct range search structure was further used to design space-
efficient text indexes. Mäkinen and Navarro [15] initially designed this structure
for the problem of position-restricted substring search. The goal is to construct an
index for a text string T of length n such that given a query substring P of length
m and a range [i..j] of positions in T , the occurrences of P in this range can
be reported efficiently. They showed how to reduce the problem to orthogonal
range search on an n × n grid, and designed a text index of 3n lg n + o(n lg n)
bits to support position-restricted substring search in O(m + occ lg n) time,
where occ is the number of occurrences of P in T . Chien et al. [7] considered
the problem of indexing a text string to support the general substring search
that reports the occurrences of a query pattern P in a text string T . This is a
fundamental problem in computer science. They designed a succinct text index
using O(n lg σ) bits, where σ is the alphabet size, to support substring search in

2



O(m + lg n(lgσ n + occ lg n)) time. One key data structure in their solution is
the same succinct range search structure [15].

1.1 Our Results

In this paper, we design succinct data structures for orthogonal range search
on an n × n grid. Our range search structure is an improvement upon that of
Mäkinen and Navarro [15], and we use it to improve previous results on design-
ing space-efficient text indexes for substring search [7] and position-restricted
substring search [15]. We also apply our structure to extend the previous result
on representing a sequence of small integers succinctly [10], as well as a restricted
version of orthogonal range search in which the query range is defined by two
points in the point set [4]. More precisely, we present the following results, among
which the first one is our main result and the rest are its applications:

1. A succinct data structure that encodes a point set, N , of n points in an
n× n grid using n lg n + o(n lg n) bits to support orthogonal range counting
in O(lg n/ lg lg n) time, and orthogonal range reporting in O(k lg n/ lg lg n)
time, where k is the size of the output. Compared to the succinct struc-
ture of Mäkinen and Navarro [15], this data structure achieves an improve-
ment on query time by a factor of lg lg n, while still using space close to the
information-theoretic minimum. Another improvement is that our structure
does not require each point to have a distinct x-coordinate or y-coordinate.

2. A succinct text index of O(n lg σ) bits for a text string T of length n over
an alphabet of size σ that supports substring search in O(m + lg n(lgσ n +
occ lg n)/ lg lg n) time, where m is the length of the query substring, and occ

is the number of its occurrences in T . This provides faster query support than
the structure of Chien et al. [7] while using the same amounts of space.

3. A text index of 3n lg n + o(n lg n) bits that supports position-restricted sub-
string search in O(m + occ lg n/ lg lg n) time. This improves the query time
of the index of Mäkinen and Navarro [15] using the same amount of space.

4. A succinct data structure that encodes a sequence, S, of n numbers in [1..s],
where s = polylog(n), in nH0(S) + o(n) bits4 to support the following
query in constant time: given a range, [p1..p2], of positions in S and a range,
[v1..v2], of values, compute the number of entries in S[p1..p2] whose values
are in the range [v1..v2]. These entries can also be reported in constant time
per entry. This extends the result of Ferragina et al. [10] on the same input
data to support more operations.

5. A space-efficient data structure that encodes a point set N in the plane in
cn + n lg n + o(n lg n) bits, where c is the number of bits required to encode
the coordinate pair of a point, to provide O(lg n/ lg lg n)-time support for a
restricted version of orthogonal range counting in which the query rectangle
is defined by two points in N . The points in the query range can be reported
in O(k lg n/ lg lg n) time.

All our results are under the word RAM model of Θ(lg n)-bit word size.

4 H0(S) is the zeroth-order empirical entropy of S.

3



2 Preliminaries

Bit vectors. A key structure for many succinct data structures and for our
research is a bit vector B[1..n] that supports rank and select operations. For
α ∈ {0, 1}, the operator rankB(α, x) returns the number of occurrences of α in
B[1..x], and selectB(α, r) returns the position of the rth occurrence of α in B.
Lemma 1 addresses the problem of succinct representations of bit vectors.

Lemma 1 ([14, 8]). A bit vector B[1..n] with v 1s can be represented using
n + o(n) bits to support the access to each bit, rank and select in O(1) time.

Sequences of small numbers. The rank/select operations can also be per-
formed on a sequence, S, of n integers in [1..s]. To define rankS(α, x) and
selectS(α, r), we simply let α ∈ {1, 2, · · · , s} to extend the definitions of these
operations on bit vectors. Ferragina et al. [10] proved the following lemma:

Lemma 2 ([10]). A sequence, S, of n numbers in [1..s], where 2 ≤ s ≤ √
n, can

be represented using nH0(S)+O(s(n lg lg n)/ logs n) bits to support the access of
each number, rank and select in O(1) time.

3 Succinct Range Search Structures on a Grid

In this section, we design a succinct data structure that supports orthogonal
range search in rank space. We first design a structure for a narrow grid (more
precisely, an n×O(lgε n) grid) in Section 3.1 with the restriction that each point
has a distinct x-coordinate. Based on this structure, we further design structures
for an n × n grid in Section 3.2 without any similar restrictions.

3.1 Orthogonal Range Search on an n × O(lgε

n) Grid

We first consider range counting on a narrow grid. We make use of the well-known
fact that the orthogonal range counting problem can be reduced to dominance
counting queries. A point whose coordinates are (x1, y1) dominates another point
(x2, y2) if x1 ≥ x2 and y1 ≥ y2, and a dominance counting query computes the
number of points dominating the query point.

Lemma 3. Let N be a set of points from the universe M = [1..n]× [1..t], where
n = |N | and t = O(lgε n) for any constant ε such that 0 < ε < 1. If each point in
N has a distinct x-coordinate, the set N can be represented using ndlg te+ o(n)
bits to support orthogonal range counting in O(1) time.

Proof. As each point in N has a distinct x-coordinate, we can store the coor-
dinates as a sequence S[1..n], in which S[i] stores the y-coordinate of the point
whose x-coordinate is i. Thus S occupies ndlg te bits, and it suffices to show how
to construct auxiliary data structures of o(n) bits to support dominance counting
(recall that dominance counting can be used to support range counting).

4



We first partition the universe M into regions called blocks of size dlg2 ne× t
by dividing the first dimension into ranges of size dlg2 ne. More precisely, the ith

block of M under this partition is Li = [(i − 1)dlg2 ne + 1..idlg2 ne] × [1..t]. We
assume that n is divisible by dlg2 ne for simplicity.

For each block Li, we further partition it into subblocks of size dlgλ ne × t
by dividing the first dimension into ranges of size dlgλ ne, where λ is a constant
such that ε < λ < 1. Under this partition, the jth subblock of Li is Li,j =

[(i−1)dlg2 ne+(j−1)dlgλ ne+1..(i−1)dlg2 ne+ jdlgλ ne]× [1..t]. For simplicity,
we assume that dlg2 ne is divisible by dlgλ ne.

We construct the following auxiliary data structures:

– A two-dimensional array A[1..n/dlg2 ne, 1..t], in which A[i, j] stores the num-
ber of points in N dominating the coordinate pair (idlg2 ne, j);

– A two-dimensional array B[1..n/dlgλ ne, 1..t], in which B[i, j] stores the num-
ber of points in N dominating the coordinate pair (idlgλ ne, j) in the block
that contains this coordinate pair;

– A table C that stores for each possible set of dlgλ ne points in the universe
[1..dlgλ ne] × [1..t] (each point in this set has a distinct x-coordinate), every
integer i in [1..dlgλ ne] and every integer j in [1..t], the number of points in
this set that dominates the coordinate pair.

We now analyze the space costs of the above data structures. A occupies
n/dlg2 ne × t × dlg ne = O(n/ lg1−ε n) = o(n) bits. As there are dlg2 ne points
inside each block, each entry of B can be stored in O(lg lg n) bits. Therefore,
B occupies n/dlgλ ne × t × O(lg lg n) = O(n lg lg n/ lgλ−ε n) = o(n) bits. To
compute the space cost of C, we first count the number, b, of possible dlgλ ne-
point set in the universe [1..dlgλ ne] × [1..t], where each point in this set has a

distinct x-coordinate. We have b = tdlg
λ ne = 2dlg

λ ne lg t. Let f = dlgλ ne lg t.
Then f = O(lgλ n lg lg n) = o(lg n). By the definition of order notation, there
exists a constant n0 such that f < 1

2
lg n for any n > n0. As b = 2f , we have

b < 2
1

2
lg n =

√
n when n > n0. Therefore, when n > n0, the space cost of C in

bits is less than
√

n×dlgλ ne×t. Thus, the space cost of C is O(
√

n lgλ+ε n) = o(n)
bits. Therefore, the auxiliary data structures occupy O(n lg lg n/ lgλ−ε n) = o(n)
bits in total.

With the above data structures, we can support dominance counting. Let
(u, v) be the coordinates of the query point q. Let Li and Li,j be the block and
subblock that contain q, respectively. The result is the sum of the following three
values: k1, the number of points in blocks Li+1, Li+2, · · · that dominate q; k2, the
number of points in subblocks Li,j+1, Li,j+2, · · · , Li,v that dominate q, where v
is the number of subblocks in block Li; and k3, the number of points in subblock
Li,j that dominate q. By the definitions of the data structures we constructed,

we have k1 = A[i, y] and k2 = B[i × dlg2 ne/dlgλ ne + j, y]. To compute k3, we
first compute the coordinates of q inside block Li,j by treating Li,j as a universe

of size dlgλ ne×t, and get the encoding of the subsequence of S that corresponds
to points inside Li,j . With these we can perform table lookup on C to compute
k3 in constant time. ut

5



We next show how to support range reporting.

Lemma 4. Let N be a set of points from the universe M = [1..n]× [1..t], where
n = |N | and t = O(lgε n) for any constant ε such that 0 < ε < 1. If each point in
N has a distinct x-coordinate, the set N can be represented using ndlg te+ o(n)
bits to support orthogonal range reporting in O(k) time, where k is the size of
the output.

Proof. As with the proof of Lemma 3, we encode N as the string S, and divide
M into blocks and subblocks. Based on this, we design auxiliary data structures
to support orthogonal range reporting. We answer a query in two steps. Given
a query rectangle R, we first compute the set, Y , of y-coordinates of the output
in O(k′) time, where k′ is the number of distinct y-coordinates of the points in
the output. Then, for each y-coordinate, v, in Y , we compute the points in R
whose y-coordinate is v (we spend O(1) time on each such point).

We first show how to compute Y in O(k′) time. We construct the following
auxiliary data structures:

– A two-dimensional array D[1..n/dlg2 ne, 1..dlg ne]. Each entry, D[i, j], stores
a bit vector of length t whose lth bit is 1 iff there is at least one point (from
the set N) in blocks Li, Li+1, · · · , Li+2j−1 whose y-coordinate is l;

– A two-dimensional array Ei[1..v][1..dlg ve] for each block Li, where v =
dlg2 ne/dlgλ ne (i.e. the maximum number of subblocks in a given block).
Each entry, Ei[j, u], stores a bit vector of length t whose lth bit is 1 iff there
is at least one point (from the set N) in subblocks Li,j , Li,j+1, · · · , Li,j+2u−1

whose y-coordinate is l;
– A table F which stores for every possible set of dlgλ ne point in the universe

[1..dlgλ ne] × [1..t] (each point in this set has a distinct x-coordinate), every
pair of integers i and j in [1..dlgλ ne], a bit vector of length t whose lth bit is
1 iff there is at least one point from this set whose x-coordinate is between
(and including) i and j and whose y-coordinate is l.

To analyze the space cost, we have that D occupies O(n/ lg2 n × lg n × t) =
O(n/ lg1−ε n) bits. As there are n/dlgλ ne subblocks in total, all the Ei’s occupy
O(n/ lgλ n× lg lg n× lgε n) = O(n lg lg n/ lgλ−ε) bits. Similarly to the analysis in
the proof of Lemma 3, we have F occupies O(

√
n × dlgλ ne × dlgλ ne × dlgε ne)

bits. Therefore, these data structures occupy O(n lg lg n/ lgλ−ε) = o(n) bits.
To use the above data structures to compute Y , let R = [x1..x2] × [y1..y2]

be the query rectangle. We first show how to compute a bit vector Z of length
t, where Z[i] = 1 iff there is a point from N whose y-coordinate is i and whose
x-coordinates are between (and including) x1 and x2. Let La,b and Lc,d be the
two subblocks whose ranges of x-coordinates contain x1 and x2, respectively.
Assume that a < c (the case in which a = c can be handled similarly). Then
Z is the result of bitwise OR operation on the the following five bit vectors of
length t:

– Z1, where Z1[i] = 1 iff there is a point in blocks La+1, La+2, · · · , Lc−1 whose
y-coordinate is i;

6



– Z2, where Z2[i] = 1 iff there is a point in subblocks La,b+1, La,b+2, · · · , La,q

whose y-coordinate is i (let La,q be the last subblock in block La);
– Z3, where Z3[i] = 1 iff there is a point in subblocks Lc,1, Lc,2, · · · , Lc,d−1

whose y-coordinate is i;
– Z4, where Z4[i] = 1 iff there is a point in subblock La,b that is in the query

rectangle and whose y-coordinate is i;
– Z5, where Z4[i] = 1 iff there is a point in subblock La,b that is in the query

rectangle and whose y-coordinate is i;

To compute Z1, we first observe that the corresponding range of indexes of
blocks is [a + 1..c− 1] = [a + 1, a + 2g]∪ [c− 2g, c− 1], where g = blg(c− a− 2)c
(similar ideas were used by Bender and Farach-Colton to support range minimum
queries [5]). Hence Z1 is result of bitwise OR operation on the bit vectors stored
in D[a+1, g] and D[c−2g, g]. Z2 and Z3 can be computed in a similar way using
Ea and Ec. Z4 and Z5 can be computed by performing table lookups on F in
constant time. Therefore, Z can be computed in constant time.

To compute Y using Z in O(k′) time, it suffices to provide rank and select

operations on Y in constant time. As Y is of size t = O(lgε n), this can be
achieved by precomputing a table of o(n) bits [8].

To further report the points in R, we observe that we store the coordinates
as a sequence, S, of numbers in [1..t]. The data structures of Ferragina et al. [10]
designed for Lemma 2 has two parts: a compressed encoding of the sequence of
nH0(S) bits and an auxiliary data structure of O(s(n lg lg n)/ lgs n) bits. Their
data structures still work if we replace the first part by the uncompressed version
of the original sequence. Thus we can construct the auxiliary data structures in
Lemma 2 to support rank and select on S in constant time. As t = O(lgε n),
these data structures occupy O(n(lg lg n)2/ lg1−ε n) = o(n) bits. For each y-
coordinate, v, in Y , the set of the points in R whose y-coordinates are equal to v
can be computed by performing rank and select operations on S, which takes
constant time per point in the output. ut

As Lemma 3 and Lemma 4 both encode and store the coordinates in the
same sequence and build auxiliary structures of o(n) bits, we can combine them:

Lemma 5. Let N be a set of points from the universe M = [1..n]× [1..t], where
n = |N | and t = O(lgε n) for any constant ε such that 0 < ε < 1. If each point in
N has a distinct x-coordinate, the set N can be represented using ndlg te+ o(n)
bits to support orthogonal range counting in O(1) time, and to support orthogonal
range reporting in O(k) time, where k is the size of the output.

3.2 Orthogonal Range Search on an n × n Grid

To design succinct data structures for range search in rank space, we first consider
range counting with the restriction that each point has a distinct x-coordinate.

Lemma 6. Let N be a set of points from the universe M = [1..n] × [1..n],
where n = |N |. If each point in N has a distinct x-coordinate, the set N can be
represented using n lg n + o(n lg n) bits to support orthogonal range counting in
O(lg n/ lg lg n) time.

7



Proof. The main idea is to combine the techniques of Lemma 3 with the gen-
eralized wavelet tree structures proposed by Ferragina et al. [10] to design a
representation of N , based on which we design algorithms to support range
counting.

We construct our structure recursively; at each level, we construct an or-
thogonal range counting structure over a set of points whose y-coordinates are
in the range [1..t] using Lemma 3, where t = O(lgε n) for any constant ε such
that 0 < ε < 1. At the first (i.e. top) level, we consider a conceptual point set
N1 from the universe M1 = [1..n] × [1..t]. N1 can be obtained by dividing the
range of y-coordinates in the universe M into t ranges of the same size, and
there is a point (a, b) in N1 iff there is a point in N whose x-coordinate is a, and
whose y-coordinate is in the ith range. More precisely, if there is a point (x, y) in
N , then there is a point (x, by/(n/t)c) in N1. We then construct an orthogonal
range counting structure, C1 for N1 using Lemma 3. Note that when we use
the approach of Lemma 3 to construct C1, we store the set N1 as a sequence
S1 over alphabet [t] in which S1[i] stores the y-coordinate of the point whose
x-coordinate is i. The approach of Lemma 2 can be used here to construct an
auxiliary structure of o(n) bits to support rank/select operations on S1 in con-
stant time. The space cost of the data structures constructed for the first level
is clearly ndlg te + o(n) bits.

At the second level, we consider t conceptual point sets N2,1, N2,2, · · · , N2,t.
The set N2,i is from the universe M2,i = [1..n2,i]×[1..t], which corresponds to the
ith range of y-coordinates of M for the level above (i.e. the first level), where n2,i

is the number of points in N whose y-coordinates are in this range. We further
divide this range into t subranges of the same size, such that the point (x, y)
is in N2,i iff there is a point in N1 whose x-coordinate is selecti(S1, x), and

whose y-coordinate is in the yth subrange. Note that
∑t

i=1 n2,i = n. Thus, if we
combine all the universes M2,1,M2,2, · · · ,M2,t such that the universe M2,i−1 is
adjacent and to the left of M2,i, we can get a universe M2 = [1..n]×[1..t]. We also
transform the coordinates of the points in N2,1, N2,2, · · · , N2,t into coordinates
in the universe M2, and denote the set that contains all these (n) points N2. We
construct an orthogonal range counting structure, C2 for N2 using Lemma 3
(Same as S1, S2 denotes the corresponding string). We can count the total
number of points in the sets N2,1, N2,2, · · · , N2,j−1 in constant time for any given
j by performing range counting on C1. Thus, we can determine the range of x-
coordinates in C2 that correspond to the points in C2,i in constant time, which
allows us to use C2 to answer orthogonal range queries on each set C2,i in
constant time. We also construct the auxiliary structures of Lemma 2 to support
rank/select operations on C2 in constant time, which can be further used to
support rank/select operations on each substring of S2 that corresponds to the
set C2,i. The total space of the data structures constructed for the second level
is thus ndlg te + o(n) bits.

We continue the above process recursively, and at each level l, we construct
t point sets for each point set considered at level l − 1. Figure 1 illustrates the
hierarchy of our structure. This structures use ndlg te + o(n) bits for each level

8



N1

N2,1 N2,2 · · · N2,t

N3,1 N3,2 · · · N3,t+1 N3,t+2 · · · N3,2t

· · ·

N3,t2−t+1 N3,t2−t+2 · · · N3,t2

N1

N2

N3N3,t

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · ·

Fig. 1. The hierarchy of the data structures in Lemma 6.

to support orthogonal range counting in each point set at this level, as well as
rank/select operations on the substrings of Sl corresponding to each set. Note
that the substring of Sl and the sub-universe of Ml that correspond to any set
at this level can be located in a top-down traversal, performing range counting
at each level in constant time until we reach level l. We continue this process
until we can no longer divide a point set into t subsets (i.e. the y-coordinates of
the points in this set are from a range of size t in M). Thus our structures have
logt n levels, and the set of data structures for each level occupy ndlg te + o(n)
bits. Therefore, the overall space of our structures is n lg n + o(n lg n) bits.

We now design a recursive algorithm to support orthogonal range count-
ing using our data structures. Let R = [x1..x2] × [y1..y2] be the query rect-
angle. We consider the case in which y2 − y1 ≥ n/t. Let z1 = dy1/(n/t)e
and z2 = by2/(n/t)c. Then R can be partitioned into three query rectangles:
R1 = [x1..x2]× [y1..z1n/t], R2 = [x1..x2]× [z1n/t+1..z2n/t] and R3 = [x1..x2]×
[z2n/t+1..y2]. The result is the sum of the numbers, r1, r2 and r3, of points in R1,
R2 and R3, respectively. We observe that r2 can be computed by performing an
orthogonal range counting query over the structure C1, using [x1..x2]×[z1..z2−1]
as the query rectangle. Thus we need only compute r1 (the computation of r3

is similar). Note that R2 is the maximum sub-rectangle of R whose range of
y-coordinates starts with a multiple of n/t and whose width is divisible by n/t,
and we use C1 to compute the number of points in it. Using the same strategy,
we can compute the maximum sub-rectangle of R1 whose range of y-coordinates
starts with a multiple of n/t2 and whose width is divisible by n/t2, and we use
C2,z1−1 to compute this result. To perform this query on C2,z1−1, we need to scale
down the range of x-coordinates of R1 to [rankS1

(z − 1, x1)..rankS1
(z − 1, x2)].

The number of the points in the remaining part of R1 (note that they are all
above this sub-rectangle) can be computed in a recursive fashion using the same
approach. Thus r1 can be computed by performing a top-down traversal to at
most the bottom level, and we require constant time per level. Therefore, r1 can
be computed in O(logt n) = O(lg n/ lg lg n) time. Hence we can compute r in
O(lg n/ lg lg n) time. The case in which y2 − y1 < n/t can be handled similarly.

ut

We now remove the restriction that each point has a distinct x-coordinate:

9



Lemma 7. Let N be a set of points from the universe M = [1..n]× [1..n], where
n = |N |. N can be represented using n lg n + o(n lg n) bits to support orthogonal
range counting in O(lg n/ lg lg n) time.

Proof. We construct a point set N ′ in which each point has a distinct x-coordinate
as follows: Sort the points in N in increasing order using their x-coordinates as
the primary key and their y-coordinates as the secondary key. If the ith point in
this order has y-coordinate yi, we add the point (i, yi) into N ′. We also construct
a bit vector C to encode the number of points having the same x-coordinates.
More precisely, C = 10k110k2 · · · 10kn , where kj is the number of points whose
x-coordinates are j. See Figure 2 for an example.

We represent N ′ using Lemma 6 using n lg n + o(n lg n) bits. There are n 1s
and n 0s in C, so we can represent C in 2n + o(n) bits to support rank/select
operations. The overall space cost of our data structures is n lg n+o(n lg n) bits.

To answer an orthogonal range query, let R = [x1..x2]× [y1..y2] be the query
rectangle. Consider the points from N that is in R. We observe that the points in
N ′ corresponding to them are in the rectangle R′ = [rankC(0, selectC(1, x1))+
1..rankC(0, selectC(1, x2+1))]×[y1..y2]. Thus we need only perform an orthog-
onal range counting query on N ′ using R′ as the query rectangle. ut

Lemma 8. Let N be a set of points from the universe M = [1..n]× [1..n], where
n = |N |. N can be represented using n lg n + o(n lg n) bits to support orthogonal
range reporting in O(k lg n/ lg lg n) time, where k is the size of the output.

Proof. We only consider the case in which each point has a distinct x-coordinate;
the approach in Lemma 7 can be used to extend this to the more general case.

We use the approach of Lemma 6 to construct a hierarchy of structures.
The only difference is that at each level i, we use Lemma 4 to construct Ci

to support range reporting on Ni. The same algorithm can be used to support
orthogonal range reporting; at each level we report a set of points in the an-
swer. The challenge here is how to get the original coordinates of each point
reported at the ith level. Let (x, y) be the coordinates of a point, v, reported
in the set Nj,k. Then the set Nj−1,dk/te contains v in the level above. Note
that in previous steps, we have computed the number, u, of points in the sets
Nj−1,1, Nj−1,2, · · · , Nj−1,dk/te−1. The x-coordinate of the point in Nj,k corre-
sponding to v is selectk(Sj−1, x + rankk(Sj−1, u)) − u). Using this approach,
we can go up one level at a time, until we reach the top level, where we get
the original x-coordinate of v. Thus the x-coordinate of v can be computed in
O(lg n/ lg lg n) time. To retrieve the y-coordinate of v, we use the fact that each
successive level (after level i) divides the range in N corresponding to each y-
coordinate at the level above into t ranges of the same size. Thus, by going down
our hierarchy of structures until reaching the bottom level, we can compute the
original y-coordinate of v. This can be performed in O(lg n/ lg lg n) time. ut

Combing Lemma 7 and Lemma 8, we have our main result:

Theorem 1. Let N be a set of points from the universe M = [1..n] × [1..n],
where n = |N |. N can be represented using n lg n + o(n lg n) bits to support

10



orthogonal range counting in O(lg n/ lg lg n) time, and orthogonal range reporting
in O(k lg n/ lg lg n) time, where k is the size of the output.

4 Applications

Substring search. The succinct text index of Chien et al. [7] uses the succinct
orthogonal range search structure of Mäkinen and Navarro [15]. Thus, we can
speed up substring search by using our structure in Theorem 1:

Theorem 2. A text string T of length n over an alphabet of size σ can be
encoded in O(n lg σ) bits to support substring search in O(m + lg n(lgσ n +
occ lg n)/ lg lg n) time, where m is the length of the query substring, and occ

is the number of its occurrences in T .

Position-restricted substring search. As Mäkinen and Navarro [15] designed
a text index that supports position-restricted substring search by reducing this
problem to orthogonal range search on a grid, we can improve their result by
applying Theorem 1:

Theorem 3. Given a text string T of length n over an alphabet of size σ, there
is an index of O(3n lg n) bits that supports position-restricted range search in
O(m+ occ(lg n)/ lg lg n) time, where m is the length of the query substring, and
occ is the number of its occurrences in T .

Sequences of small numbers. Lemma 2 is interesting only if s = o(lg n/ lg lg n)
because otherwise, the second term in its space bound becomes a dominating
term. Thus, Ferragina et al. [10] designed another approach to encode a se-
quence, S, of n integers bounded by s = polylog(n) in nH0(S) + o(n) bits
to support rank/select operations in constant time. We can further extend their
representation to support one more operation: retrieving the entries in any given
subsequence of S whose values are in a given range. This is equivalent to the
problem of supporting range search on an n× t grid where t = polylog(n) (each
point has a distinct x-coordinate). If we apply the techniques in Section 3.2
to this problem, we only build a constant number of levels of structures. The
approach in [10] can also be applied here to achieve compression. Thus:

Theorem 4. A sequence, S, of n numbers in [1..s], where s = polylog(n), can
be encoded in nH0(S) + o(n) bits such that given a range, [p1..p2], of positions
in S and a range, [v1..v2], of values, the number of entries in S[p1..p2] whose
values are in the range [v1..v2] can be computed in constant time. These entries
can be listed in O(k) time, where k is the size of the output. The access to each
number, rank and select operations can also be supported in O(1) time.

A restricted version of orthogonal range search. We consider a restricted
version of range search (a weaker operation was proposed by Bauernöppel et
al. [4]) and we have the following theorem (see Appendix B for the proof):

11



Theorem 5. A point set N in the plane can be encoded in cn+n lg n+o(n lg n)
bits, where n = |N | and c is the number of bits required to encode the coordinate
pair of each point, to support orthogonal range counting in O(lg n/ lg lg n) time
and orthogonal range reporting in O(k lg n/ lg lg n) time (k is the size of the
output) if the query rectangle is defined by two points in N .

References

1. S. Alstrup, G. S. Brodal, and T. Rauhe. New data structures for orthogonal range
searching. In FOCS, pages 198–207, 2000.

2. J. Barbay, A. Golynski, J. I. Munro, and S. S. Rao. Adaptive searching in succinctly
encoded binary relations and tree-structured documents. Theoretical Computer

Science, 387(3):284–297, 2007.
3. J. Barbay, M. He, J. I. Munro, and S. S. Rao. Succinct indexes for strings, binary

relations and multi-labeled trees. In SODA, pages 680–689, 2007.
4. F. Bauernöppel, E. Kranakis, D. Krizanc, A. Maheshwari, J.-R. Sack, and J. Urru-

tia. Planar stage graphs: Characterizations and applications. Theoretical Computer

Science, 175(2):239–255, 1997.
5. M. A. Bender and M. Farach-Colton. The LCA problem revisited. In LATIN,

pages 88–94, 2000.
6. B. Chazelle. A functional approach to data structures and its use in multidimen-

sional searching. SIAM Journal on Computing, 17(3):427–462, 1988.
7. Y.-F. Chien, W.-K. Hon, R. Shah, and J. S. Vitter. Geometric burrows-wheeler

transform: Linking range searching and text indexing. In DCC, pages 252–261,
2008.

8. D. R. Clark and J. I. Munro. Efficient suffix trees on secondary storage. In SODA,
pages 383–391, 1996.

9. P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled
trees for optimal succinctness, and beyond. In FOCS, pages 184–196, 2005.

10. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representa-
tions of sequences and full-text indexes. ACM Trans. Alg., 3(2):20, 2007.

11. H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for
geometry problems. In STOC, pages 135–143, 1984.

12. R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with level-ancestor
queries. ACM Transactions on Algorithms, 2(4):510–534, 2006.

13. R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes.
In SODA, pages 841–850, 2003.

14. G. Jacobson. Space-efficient static trees and graphs. In FOCS, pages 549–554,
1989.

15. V. Mäkinen and G. Navarro. Rank and select revisited and extended. Theor.

Comput. Sci., 387(3):332–347, 2007.
16. Y. Nekrich. Orthogonal range searching in linear and almost-linear space. Com-

putational Geometry: Theory and Applications, 42(4):342–351, 2009.
17. M. H. Overmars. Efficient data structures for range searching on a grid. Journal

of Algorithms, 9(2):254–275, 1988.
18. R. Raman, V. Raman, and S. R. Satti. Succinct indexable dictionaries with appli-

cations to encoding k-ary trees, prefix sums and multisets. ACM Transactions on

Algorithms, 3(4):43, 2007.

12



Appendix

A An example in the proof of Lemma 7.

Figure 2 gives an example of the point set N ′ and bit vector C constructed from
N in the proof of Lemma 7.

N N ′

C = 1010110011100010

Fig. 2. An example in the proof of Lemma 7.

B Proof of Theorem 5

We first sort the coordinate pairs of the points in N in lexicographic order, and
store them in a sequence S. S occupies cn bits. We next construct a point set,
N∗, in an n×n grid as follows. Let p be a point in N and let i be the index of p
in lexicographic order. There are n points in N , so there are at most n distinct
y-coordinates. Assume that the y-coordinate of p is the jth smallest among these
distinct values. We then add a point (i, j) into the set N∗.

We construct an orthogonal range search structure, W , for the point set N∗

using Theorem 1. To answer a query, let q and r be two query points in N , and
let a and b be the indexes of the coordinate pairs of q and r in S, respectively.
Then a and b are the x-coordinates of the two points, s and t, in N∗ that
correspond to q and r, respectively. The corresponding y-coordinates of s and
t can be computed using S in O(lg n/ lg lg n) time. The coordinates of s and t
define a rectangle, R, in the grid, and we use it as a query rectangle to perform
orthogonal range search on N∗. The number of points in N∗ that is inside R
is equal to the number of points in N that is inside the rectangle defined by q
and r, which can be computed in O(lg n/ lg lg n) time. The coordinates of the
points inside R in the grid can be computed in O(k lg n/ lg lg n) time, and we
simply use their x-coordinates to index into S to retrieve the coordinates of the
corresponding points in N . ut

13


