Skip to main content

Parametrized Regular Infinite Games and Higher-Order Pushdown Strategies

  • Conference paper
Fundamentals of Computation Theory (FCT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5699))

Included in the following conference series:

Abstract

Given a set P of natural numbers, we consider infinite games where the winning condition is a regular ω-language parametrized by P. In this context, an ω-word, representing a play, has letters consisting of three components: The first is a bit indicating membership of the current position in P, and the other two components are the letters contributed by the two players. Extending recent work of Rabinovich we study here predicates P where the structure (ℕ, + 1, P) belongs to the pushdown hierarchy (or “Caucal hierarchy”). For such a predicate P where (ℕ, + 1, P) occurs in the k-th level of the hierarchy, we provide an effective determinacy result and show that winning strategies can be implemented by deterministic level-k pushdown automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Büchi, R., Landweber, L.: Solving sequential conditions by finite state strategies. Transactions of the AMS 138(27), 295–311 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carayol, A.: Regular sets of higher-order pushdown stacks. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 168–179. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Carayol, A., Slaats, M.: Positional strategies for higher-order pushdown parity games. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 217–228. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Carton, O., Thomas, W.: The monadic theory of morphic infinite words and generalizations. Inf. Comput. 176(1), 51–65 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caucal, D.: On infinite graphs having a decidable monadic theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Fratani, S.: Automates á piles depiles ... de piles. PhD thesis, Université Bordeaux 1 (2005)

    Google Scholar 

  8. Gale, D., Stewart, F.M.: Infinite games with perfect information. In: Contributions to the Theory of Games. Princeton University Press, Princeton (1953)

    Google Scholar 

  9. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  10. Hänsch, P.: Infinite games with parameters. Master’s thesis, Lehrstuhl für Informatik 7, RWTH Aachen, Aachen, Germany (2009)

    Google Scholar 

  11. McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Inform. Contr. 9, 521–530 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rabinovich, A.: Church synthesis problem with parameters. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 546–561. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Rabinovich, A.: Church synthesis problem with parameters. Logical Methods in Computer Science 3(4:9), 1–24 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Rabinovich, A., Thomas, W.: Decidable theories of the ordering of natural number with unary predicates. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 562–574. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  16. Siefkes, D.: The recursive sets in certain monadic second order fragments of arithmetic. Archiv math. Logik 17, 71–80 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Thomas, W.: The theory of successor with an extra predicate. Math. Ann. 237, 121–132 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hänsch, P., Slaats, M., Thomas, W. (2009). Parametrized Regular Infinite Games and Higher-Order Pushdown Strategies. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds) Fundamentals of Computation Theory. FCT 2009. Lecture Notes in Computer Science, vol 5699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03409-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03409-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03408-4

  • Online ISBN: 978-3-642-03409-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics