Abstract
Given a set P of natural numbers, we consider infinite games where the winning condition is a regular ω-language parametrized by P. In this context, an ω-word, representing a play, has letters consisting of three components: The first is a bit indicating membership of the current position in P, and the other two components are the letters contributed by the two players. Extending recent work of Rabinovich we study here predicates P where the structure (ℕ, + 1, P) belongs to the pushdown hierarchy (or “Caucal hierarchy”). For such a predicate P where (ℕ, + 1, P) occurs in the k-th level of the hierarchy, we provide an effective determinacy result and show that winning strategies can be implemented by deterministic level-k pushdown automata.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Büchi, R., Landweber, L.: Solving sequential conditions by finite state strategies. Transactions of the AMS 138(27), 295–311 (1969)
Carayol, A.: Regular sets of higher-order pushdown stacks. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 168–179. Springer, Heidelberg (2005)
Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)
Carayol, A., Slaats, M.: Positional strategies for higher-order pushdown parity games. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 217–228. Springer, Heidelberg (2008)
Carton, O., Thomas, W.: The monadic theory of morphic infinite words and generalizations. Inf. Comput. 176(1), 51–65 (2002)
Caucal, D.: On infinite graphs having a decidable monadic theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)
Fratani, S.: Automates á piles depiles ... de piles. PhD thesis, Université Bordeaux 1 (2005)
Gale, D., Stewart, F.M.: Infinite games with perfect information. In: Contributions to the Theory of Games. Princeton University Press, Princeton (1953)
Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)
Hänsch, P.: Infinite games with parameters. Master’s thesis, Lehrstuhl für Informatik 7, RWTH Aachen, Aachen, Germany (2009)
McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Inform. Contr. 9, 521–530 (1966)
Rabinovich, A.: Church synthesis problem with parameters. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 546–561. Springer, Heidelberg (2006)
Rabinovich, A.: Church synthesis problem with parameters. Logical Methods in Computer Science 3(4:9), 1–24 (2007)
Rabinovich, A., Thomas, W.: Decidable theories of the ordering of natural number with unary predicates. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 562–574. Springer, Heidelberg (2006)
Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)
Siefkes, D.: The recursive sets in certain monadic second order fragments of arithmetic. Archiv math. Logik 17, 71–80 (1975)
Thomas, W.: The theory of successor with an extra predicate. Math. Ann. 237, 121–132 (1978)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hänsch, P., Slaats, M., Thomas, W. (2009). Parametrized Regular Infinite Games and Higher-Order Pushdown Strategies. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds) Fundamentals of Computation Theory. FCT 2009. Lecture Notes in Computer Science, vol 5699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03409-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-03409-1_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03408-4
Online ISBN: 978-3-642-03409-1
eBook Packages: Computer ScienceComputer Science (R0)