Abstract
Weighted automata are finite automata with numerical weights on transitions. Nondeterministic weighted automata define quantitative languages L that assign to each word w a real number L(w) computed as the maximal value of all runs over w, and the value of a run r is a function of the sequence of weights that appear along r. There are several natural functions to consider such as Sup, LimSup, LimInf, limit average, and discounted sum of transition weights.
We introduce alternating weighted automata in which the transitions of the runs are chosen by two players in a turn-based fashion. Each word is assigned the maximal value of a run that the first player can enforce regardless of the choices made by the second player. We survey the results about closure properties, expressiveness, and decision problems for nondeterministic weighted automata, and we extend these results to alternating weighted automata.
For quantitative languages L 1 and L 2, we consider the pointwise operations max(L 1,L 2), min(L 1,L 2), 1 − L 1, and the sum L 1 + L 2. We establish the closure properties of all classes of alternating weighted automata with respect to these four operations.
We next compare the expressive power of the various classes of alternating and nondeterministic weighted automata over infinite words. In particular, for limit average and discounted sum, we show that alternation brings more expressive power than nondeterminism.
Finally, we present decidability results and open questions for the quantitative extension of the classical decision problems in automata theory: emptiness, universality, language inclusion, and language equivalence.
This research was supported in part by the Swiss National Science Foundation under the Indo-Swiss Joint Research Programme, by the European Network of Excellence on Embedded Systems Design (ArtistDesign), by the European Combest, Quasimodo, and Gasics projects, by the PAI program Moves funded by the Belgian Federal Government, and by the CFV (Federated Center in Verification) funded by the F.R.S.-FNRS.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andersson, D.: An improved algorithm for discounted payoff games. In: ESSLLI Student Session, pp. 91–98 (2006)
Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. Journal of the ACM 28(1), 114–133 (1981)
Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)
Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties for quantitative languages. In: Proc. of LICS: Logic in Computer Science. IEEE Comp. Soc. Press, Los Alamitos (2009)
Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. International Journal of Game Theory 8, 109–113 (1979)
Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1997)
Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)
Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete Mathematics 23(3), 309–311 (1978)
Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Monographs in Theoretical Computer Science. An EATCS Series, vol. 5. Springer, Heidelberg (1986)
Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Trans. Comput. Log. 2(3), 408–429 (2001)
Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential space. In: Proc. of FOCS: Foundations of Computer Science, pp. 125–129. IEEE, Los Alamitos (1972)
Schützenberger, M.P.: On the definition of a family of automata. Information and control 4, 245–270 (1961)
Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with applications to temporal logic. Theoretical Computer Science 49, 217–237 (1987)
Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proc. of LICS: Logic in Computer Science, pp. 332–344. IEEE, Los Alamitos (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chatterjee, K., Doyen, L., Henzinger, T.A. (2009). Alternating Weighted Automata. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds) Fundamentals of Computation Theory. FCT 2009. Lecture Notes in Computer Science, vol 5699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03409-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-03409-1_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03408-4
Online ISBN: 978-3-642-03409-1
eBook Packages: Computer ScienceComputer Science (R0)