Skip to main content

Decision Version of the Road Coloring Problem Is NP-Complete

  • Conference paper
Fundamentals of Computation Theory (FCT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5699))

Included in the following conference series:

Abstract

After Trahtman in his brilliant paper [10] solved the Road Coloring Problem, a couple of new problems have arisen in the field of synchronizing automata. Some of them naturally extends questions related to the ’classical’ version of synchronization. Particulary, it is known that the problem of finding the synchronizing word of a given length for a given automaton is NP-complete. Volkov [11] asked, what is the complexity of the following problem: given a constant out-degree digraph (possibly with multiple edges) and a natural number m, does there exist a synchronizing word of length m for some synchronizing labeling of G. In this paper we show that this decision version of the Road Coloring Problem is NP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adler, R.L., Weiss, B.: Similarity of automorphisms of the torus. Memoirs of the Amer. Math. Soc. 98 (1970)

    Google Scholar 

  2. Adler, R.L., Goodwyn, L.W., Weiss, B.: Equivalence of topological Markov shifts. Israel J. of Math. 27, 49–63 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Béal, M.-P., Perrin, D.: A quadratic algorithm for road coloring. arXiv:0803.0726v6 (2008)

    Google Scholar 

  4. Eppstein, D.: Reset sequences for monotonic automata. SIAM Journal of Computing 19, 500–510 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  6. Pin, J.E.: On two combinatorial problems arising from automata theory. Annals of Discrete Math. 17, 535–548 (1983)

    MathSciNet  MATH  Google Scholar 

  7. Samotij, W.: A note on the complexity of the problem of finding shortest synchronizing words. In: Proc. AutoMathA 2007, Automata: from Mathematics to Applications, Univ. Palermo (CD) (2007)

    Google Scholar 

  8. Trahtman, A.N.: Notable trends concerning the synchronization of graphs and automata. In: CTW 2006. El. Notes in Discrete Math., vol. 25, pp. 173–175 (2006)

    Google Scholar 

  9. Trahtman, A.N.: A Subquadratic Algorithm for Road Coloring. arXiv:0801.2838v1 (2008)

    Google Scholar 

  10. Trahtman, A.N.: Road Coloring Problem. Israel J. of Mathematics (to appear)

    Google Scholar 

  11. Volkov, M.: Open Problems on Synchronizing Automata. In: Conference ’Around the Černý Conjecture’, Wroclaw (2008)

    Google Scholar 

  12. Volkov, M.: Synchronizing Automata and Černý Conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Volkov, M.: Synchronizing Automata and the Road Coloring Theorem. In: Tutorial on Workshop on Algebra, Combinatorics and Complexity, WACC 2008, Moscow, Russia (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roman, A. (2009). Decision Version of the Road Coloring Problem Is NP-Complete. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds) Fundamentals of Computation Theory. FCT 2009. Lecture Notes in Computer Science, vol 5699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03409-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03409-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03408-4

  • Online ISBN: 978-3-642-03409-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics