Abstract
We show that the reachability problem for directed graphs that are either K 3,3-free or K 5-free is in unambiguous log-space, UL ∩ coUL. This significantly extends the result of Bourke, Tewari, and Vinodchandran that the reachability problem for directed planar graphs is in UL ∩ coUL.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allender, E., Datta, S., Roy, S.: The directed planar reachability problem. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 238–249. Springer, Heidelberg (2005)
Asano, T.: An approach to the subgraph homeomorphism problem. Theoretical Computer Science 38 (1985)
Bourke, C., Tewari, R., Vinodchandran, N.: Directed planar reachability is in unambiguous log-space. In: Annual IEEE Conference on Computational Complexity (CCC), pp. 217–221 (2007)
Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph isomorphism is in log-space. Technical report, arXiv:0809.2319v2 (2009)
Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM Journal on Computing 2(3), 135–158 (1973)
Khuller, S.: Parallel algorithms for K 5-minor free graphs. Technical Report TR88-909, Cornell University, Computer Science Department (1988)
Limaye, N., Mahajan, M., Nimbhorkar, P.: Longest paths in planar dags in unambiguous logspace. In: Computing: The Australian Theory Symposium (CATS), vol. 94 (2009)
Reingold, O.: Undirected st-connectivity in log-space. In: Proceedings of the 37th annual ACM Symposium on Theory of Computing (STOC), pp. 376–385 (2005)
Reinhardt, K., Allender, E.: Making nondeterminism unambiguous. SIAM Journal of Computing 29(4), 1118–1131 (2000)
Thierauf, T., Wagner, F.: The isomorphism problem for planar 3-connected graphs is in unambiguous logspace. In: Proceedings of the 25th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pp. 633–644 (2008)
Tutte, W.T.: Connectivity in graphs. University of Toronto Press (1966)
Vazirani, V.V.: NC algorithms for computing the number of perfect matchings in K 3,3-free graphs and related problems. Information and Computation 80 (1989)
Wagner, K.: Über eine Eigenschaft der ebenen Komplexe. In: Mathematical Annalen, vol. 114 (1937)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Thierauf, T., Wagner, F. (2009). Reachability in K 3,3-Free Graphs and K 5-Free Graphs Is in Unambiguous Log-Space. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds) Fundamentals of Computation Theory. FCT 2009. Lecture Notes in Computer Science, vol 5699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03409-1_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-03409-1_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03408-4
Online ISBN: 978-3-642-03409-1
eBook Packages: Computer ScienceComputer Science (R0)