Skip to main content

Energy Complexity and Depth of Threshold Circuits

  • Conference paper
Fundamentals of Computation Theory (FCT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5699))

Included in the following conference series:

Abstract

In the paper we show that there is a close relationship between the energy complexity and the depth of threshold circuits computing any Boolean function although they have completely different physical meanings. Suppose that a Boolean function f can be computed by a threshold circuit C of energy complexity e and hence at most e threshold gates in C output “1” for any input to C. We then prove that the function f can be computed also by a threshold circuit C′ of depth 2e + 1 and hence the parallel computation time of C′ is 2e + 1. If the size of C is s, that is, there are s threshold gates in C, then the size s′ of C′ is s′ = 2es + 1. Thus, if the size s of C is polynomial in the number n of input variables, then the size s′ of C′ is polynomial in n, too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  2. Parberry, I.: Circuit Complexity and Neural Networks. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  3. Shao-Chin, S., Nishino, T.: The complexity of threshold circuits for parity functions. IEICE Transactions on Information and Systems 80(1), 91–93 (1997)

    Google Scholar 

  4. Sima, J., Orponen, P.: General-purpose computation with neural networks: A survey of complexity theoretic result. Neural Computation 15, 2727–2778 (2003)

    Article  MATH  Google Scholar 

  5. Siu, K.Y., Roychowdhury, V., Kailath, T.: Discrete Neural Computation; A Theoretical Foundation. Prentice-Hall, Inc., Upper Saddle River (1995)

    MATH  Google Scholar 

  6. Lennie, P.: The cost of cortical computation. Current Biology 13, 493–497 (2003)

    Article  Google Scholar 

  7. Margrie, T.W., Brecht, M., Sakmann, B.: In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch 444(4), 491–498 (2002)

    Article  Google Scholar 

  8. Uchizawa, K., Douglas, R., Maass, W.: On the computational power of threshold circuits with sparse activity. Neural Computation 18(12), 2994–3008 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Uchizawa, K., Takimoto, E.: Exponential lower bounds on the size of threshold circuits with small energy complexity. Theoretical Computer Science 407, 474–487 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Uchizawa, K., Takimoto, E., Nishizeki, T.: Size and energy of threshold circuits computing mod functions. In: 34th International Symposium on Mathematical Foundations of Computer Science (to appear, 2009)

    Google Scholar 

  11. Impagliazzo, R., Paturi, R., Saks, M.E.: Size-depth trade-offs for threshold circuits. SIAM Journal on Computing 26(3), 693–707 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Siu, K.Y., Roychowdhury, V.P., Kailath, T.: Rational approximation techniques for analysis of neural networks. IEEE Transactions on Information Theory 40(2), 455–466 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Siu, K.Y., Bruck, J., Kailath, T., Hofmeister, T.: Depth efficient neural networks for division and related problems. IEEE Transaction on Infromation theory 39, 946–956 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Siu, K.Y., Roychowdhury, V.: On optimal depth threshold circuits for multiplication and related problems. SIAM Journal on Discrete Mathematics 7(2), 284–292 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yeh, C.H., Varvarigos, E.A.: Depth-efficient threshold circuits for multiplication and symmetric function computation. In: Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090, pp. 231–240. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  16. Amano, K., Maruoka, A.: On the complexity of depth-2 circuits with threshold gates. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 107–118. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Forster, J.: A linear lower bound on the unbounded error probabilistic communication complexity. Journal of Computer and System Sciences 65, 612–625 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hajnal, A., Maass, W., Pudlák, P., Szegedy, M., Turá, G.: Threshold circuits of bounded depth. Journal of Computer and System Sciences 46, 129–154 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Håstad, J., Goldmann, M.: On the power of small-depth threshold circuits. Computational Complexity 1, 113–129 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uchizawa, K., Nishizeki, T., Takimoto, E. (2009). Energy Complexity and Depth of Threshold Circuits. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds) Fundamentals of Computation Theory. FCT 2009. Lecture Notes in Computer Science, vol 5699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03409-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03409-1_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03408-4

  • Online ISBN: 978-3-642-03409-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics