Abstract
In the paper we show that there is a close relationship between the energy complexity and the depth of threshold circuits computing any Boolean function although they have completely different physical meanings. Suppose that a Boolean function f can be computed by a threshold circuit C of energy complexity e and hence at most e threshold gates in C output “1” for any input to C. We then prove that the function f can be computed also by a threshold circuit C′ of depth 2e + 1 and hence the parallel computation time of C′ is 2e + 1. If the size of C is s, that is, there are s threshold gates in C, then the size s′ of C′ is s′ = 2es + 1. Thus, if the size s of C is polynomial in the number n of input variables, then the size s′ of C′ is polynomial in n, too.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry. MIT Press, Cambridge (1988)
Parberry, I.: Circuit Complexity and Neural Networks. MIT Press, Cambridge (1994)
Shao-Chin, S., Nishino, T.: The complexity of threshold circuits for parity functions. IEICE Transactions on Information and Systems 80(1), 91–93 (1997)
Sima, J., Orponen, P.: General-purpose computation with neural networks: A survey of complexity theoretic result. Neural Computation 15, 2727–2778 (2003)
Siu, K.Y., Roychowdhury, V., Kailath, T.: Discrete Neural Computation; A Theoretical Foundation. Prentice-Hall, Inc., Upper Saddle River (1995)
Lennie, P.: The cost of cortical computation. Current Biology 13, 493–497 (2003)
Margrie, T.W., Brecht, M., Sakmann, B.: In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch 444(4), 491–498 (2002)
Uchizawa, K., Douglas, R., Maass, W.: On the computational power of threshold circuits with sparse activity. Neural Computation 18(12), 2994–3008 (2006)
Uchizawa, K., Takimoto, E.: Exponential lower bounds on the size of threshold circuits with small energy complexity. Theoretical Computer Science 407, 474–487 (2008)
Uchizawa, K., Takimoto, E., Nishizeki, T.: Size and energy of threshold circuits computing mod functions. In: 34th International Symposium on Mathematical Foundations of Computer Science (to appear, 2009)
Impagliazzo, R., Paturi, R., Saks, M.E.: Size-depth trade-offs for threshold circuits. SIAM Journal on Computing 26(3), 693–707 (1997)
Siu, K.Y., Roychowdhury, V.P., Kailath, T.: Rational approximation techniques for analysis of neural networks. IEEE Transactions on Information Theory 40(2), 455–466 (1994)
Siu, K.Y., Bruck, J., Kailath, T., Hofmeister, T.: Depth efficient neural networks for division and related problems. IEEE Transaction on Infromation theory 39, 946–956 (1992)
Siu, K.Y., Roychowdhury, V.: On optimal depth threshold circuits for multiplication and related problems. SIAM Journal on Discrete Mathematics 7(2), 284–292 (1994)
Yeh, C.H., Varvarigos, E.A.: Depth-efficient threshold circuits for multiplication and symmetric function computation. In: Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090, pp. 231–240. Springer, Heidelberg (1996)
Amano, K., Maruoka, A.: On the complexity of depth-2 circuits with threshold gates. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 107–118. Springer, Heidelberg (2005)
Forster, J.: A linear lower bound on the unbounded error probabilistic communication complexity. Journal of Computer and System Sciences 65, 612–625 (2002)
Hajnal, A., Maass, W., Pudlák, P., Szegedy, M., Turá, G.: Threshold circuits of bounded depth. Journal of Computer and System Sciences 46, 129–154 (1993)
Håstad, J., Goldmann, M.: On the power of small-depth threshold circuits. Computational Complexity 1, 113–129 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Uchizawa, K., Nishizeki, T., Takimoto, E. (2009). Energy Complexity and Depth of Threshold Circuits. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds) Fundamentals of Computation Theory. FCT 2009. Lecture Notes in Computer Science, vol 5699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03409-1_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-03409-1_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03408-4
Online ISBN: 978-3-642-03409-1
eBook Packages: Computer ScienceComputer Science (R0)