Abstract
The quality of today’s digital maps is very high. This allows for new functionality as illustrated by modern car navigation systems (e.g., TomTom, Garmin, etc.), Google maps, Google Street View, Mashups using geo-tagging (e.g., Panoramio, HousingMaps, etc.), etc. People can seamlessly zoom in and out using the interactive maps in such systems. Moreover, all kinds of information can be projected on these interactive maps (e.g., traffic jams, four-bedroom apartments for sale, etc.). Process models can be seen as the “maps” describing the operational processes of organizations. Unfortunately, accurate and interactive process maps are typically missing when it comes to business process management. Either there are no good maps or the maps are static or outdated. Therefore, we propose to automatically generate business process maps using process mining techniques. By doing this, there is a close connection between these maps and the actual behavior recorded in event logs. This will allow for high-quality process models showing what really happened. Moreover, this will also allow for the projection of dynamic information, e.g., the “traffic jams” in business processes. In fact, the combination of accurate maps, historic information, and information about current process instances, allows for prediction and recommendation. For example, just like TomTom can predict the arrival time at a particular location, process mining techniques can be used to predict when a process instance will finish.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
van der Aalst, W.M.P.: Business Process Management Demystified: A Tutorial on Models, Systems and Standards for Workflow Management. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 1–65. Springer, Heidelberg (2004)
van der Aalst, W.M.P.: TomTom for Business Process Management (TomTom4BPM). In: Gordijn, J. (ed.) Proceedings of the 21st International Conference on Advanced Information Systems Engineering (CAiSE 2009). LNCS. Springer, Heidelberg (2009)
van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., Alves de Medeiros, A.K., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W., Weijters, A.J.M.M.: ProM 4.0: Comprehensive Support for Real Process Analysis. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007)
van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language. Information Systems 30(4), 245–275 (2005)
van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves de Medeiros, A.K., Song, M., Verbeek, H.M.W.: Business Process Mining: An Industrial Application. Information Systems 32(5), 713–732 (2007)
van der Aalst, W.M.P., Rubin, V., van Dongen, B.F., Kindler, E., Günther, C.W.: Process Mining: A Two-Step Approach to Balance Between Underfitting and Overfitting. Software and Systems Modeling (2009)
van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time Prediction Based on Process Mining. BPM Center Report BPM-09-04, BPMcenter.org (2009)
van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)
van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)
Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Sixth International Conference on Extending Database Technology, pp. 469–483 (1998)
Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249 (1998)
Crooy, R.: Predictions in Information Systems: A process mining perspective. Master’s thesis, Eindhoven University of Technology, Eindhoven (2008)
Datta, A.: Automating the Discovery of As-Is Business Process Models: Probabilistic and Algorithmic Approaches. Information Systems Research 9(3), 275–301 (1998)
van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle Time Prediction: When Will This Case Finally Be Finished? In: Meersman, R., Tari, Z. (eds.) CoopIS 2008, OTM 2008, Part I. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008)
Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Information Systems: Bridging People and Software through Process Technology. Wiley & Sons, Chichester (2005)
Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining: Adaptive Process Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)
Herbst, J.: A Machine Learning Approach to Workflow Management. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS, vol. 1810, pp. 183–194. Springer, Heidelberg (2000)
de Leoni, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Visual Support for Work Assignment in Process-Aware Information Systems. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 67–83. Springer, Heidelberg (2008)
Alves de Medeiros, A.K., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic Process Mining: An Experimental Evaluation. Data Mining and Knowledge Discovery 14(2), 245–304 (2007)
Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering Simulation Models. Information Systems 34(3), 305–327 (2009)
Rozinat, A., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge, C.: Workflow Simulation for Operational Decision Support Using Design, Historic and State Information. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 196–211. Springer, Heidelberg (2008)
Schellekens, B.: Cycle Time Prediction in Staffware. Master’s thesis, Eindhoven University of Technology, Eindhoven (2009)
Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Supporting Flexible Processes Through Recommendations Based on History. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer, Heidelberg (2008)
Staffware. Staffware Process Suite Version 2 – White Paper. Staffware PLC, Maidenhead, UK (2003)
Verwer, S.E., de Weerdt, M.M., Witteveen, C.: Efficiently learning timed models from observations. In: Wehenkel, L., Geurts, P., Maree, R. (eds.) Benelearn, Benelearn, pp. 75–76. University of Liege (2008)
Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling Adaptive Workflow Management Through Conversational Case-Based Reasoning. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 434–448. Springer, Heidelberg (2004)
Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)
van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process Discovery using Integer Linear Programming. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008)
Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer, Berlin (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
van der Aalst, W.M.P. (2009). Using Process Mining to Generate Accurate and Interactive Business Process Maps. In: Abramowicz, W., Flejter, D. (eds) Business Information Systems Workshops. BIS 2009. Lecture Notes in Business Information Processing, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03424-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-03424-4_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03423-7
Online ISBN: 978-3-642-03424-4
eBook Packages: Computer ScienceComputer Science (R0)