
ar
X

iv
:0

90
2.

28
59

v1
 [

cs
.P

L
]

 1
7

Fe
b

20
09

Transmission Protocols for Instruction Streams

J.A. Bergstra and C.A. Middelburg

Informatics Institute, Faculty of Science, University of Amsterdam,
Science Park 107, 1098 XG Amsterdam, the Netherlands

J.A.Bergstra@uva.nl,C.A.Middelburg@uva.nl

Abstract. Threads as considered in thread algebra model behaviours
to be controlled by some execution environment: upon each action per-
formed by a thread, a reply from its execution environment – which takes
the action as an instruction to be processed – determines how the thread
proceeds. In this paper, we are concerned with the case where the execu-
tion environment is remote: we describe and analyse some transmission
protocols for passing instructions from a thread to a remote execution
environment.

Keywords: transmission protocol, instruction stream, thread algebra,
process algebra, process extraction.

1998 ACM Computing Classification: D.2.1, D.2.4, F.1.1, F.3.1.

1 Introduction

The behaviours produced by sequential programs under execution are behaviours
to be controlled by some execution environment. The execution environment
concerned is increasingly more a remote execution environment. The objective
of the current paper is to clarify the phenomenon of remotely controlled program
behaviours.

Basic thread algebra [7], BTA in short, is a form of process algebra tailored
to the description and analysis of the behaviours produced by sequential pro-
grams under execution.1 Threads as considered in basic thread algebra model
behaviours to be controlled by some execution environment. Threads proceed
by performing steps, called basic actions in what follows, in a sequential fashion.
The execution environment of a thread takes the basic actions performed by the
thread as instructions to be processed. Upon each basic action performed by
the thread, a reply from the execution environment determines how the thread
proceeds. To achieve the objective of the current paper, we study some trans-
mission protocols for passing instructions from a thread to a remote execution
environment.

General process algebras, such as ACP [6, 4], CCS [11, 13] and CSP [9, 12],
are too general for the description and analysis of the behaviours produced by

1 In [7], basic thread algebra is introduced under the name basic polarized process
algebra.

http://arxiv.org/abs/0902.2859v1

sequential programs under execution. That is, it is quite awkward to describe and
analyse behaviours of this kind using such a general process algebra. However,
the behaviours considered in basic thread algebra can be viewed as processes that
are definable over ACP, see e.g. [8]. This allows for the transmission protocols
mentioned above to be described and their correctness to be verified using ACP
or rather ACPτ , an extension of ACP which supports abstraction from internal
actions. We consider first a very simple transmission protocol and then a more
complex one that is more efficient.

This paper is organized as follows. First, we give brief summaries of BTA
(Section 2) and ACPτ (Section 3). Next, we make mathematically precise the
connection between behaviours as considered in BTA and processes as considered
in ACPτ (Section 4). After that, we describe and analyse the above-mentioned
transmission protocols (Sections 5 and 6). Finally, we make some concluding
remarks (Section 7).

2 Thread Algebra

In this section, we review BTA (Basic Thread Algebra). BTA is concerned
with behaviours as exhibited by sequential programs under execution. These
behaviours are called threads.

In BTA, it is assumed that a fixed but arbitrary set A of basic actions has
been given. A thread performs basic actions in a sequential fashion. Upon each
basic action performed, a reply from the execution environment of the thread
determines how it proceeds. The possible replies are the Boolean values T and F.

To build terms, BTA has the following constants and operators:

– the deadlock constant D;
– the termination constant S;
– for each a ∈ A, the binary postconditional composition operator EaD.

We assume that there are infinitely many variables, including x, y, z. Terms
are built as usual. We use infix notation for the postconditional composition
operator. We introduce basic action prefixing as an abbreviation: a ◦ p, where
a ∈ A and p is a BTA term, abbreviates pEaD p.

The thread denoted by a closed term of the form pEaD q will first perform
a, and then proceed as the thread denoted by p if the reply from the execution
environment is T and proceed as the thread denoted by q if the reply from the
execution environment is F. The threads denoted by D and S will become inactive
and terminate, respectively. This implies that each closed BTA term denotes a
thread that will become inactive or terminate after it has performed finitely
many basic actions. Infinite threads can be described by guarded recursion.

A guarded recursive specification over BTA is a set of recursion equations
E = {X = tX | X ∈ V }, where V is a set of variables and each tX is a BTA
term of the form D, S or t EaD t′ with t and t′ that contain only variables
from V . We write V(E) for the set of all variables that occur in E. We are

2

Table 1. Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X= tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

only interested in models of BTA in which guarded recursive specifications have
unique solutions, such as the projective limit model of BTA presented in [5].

For each guarded recursive specification E and each X ∈ V(E), we introduce
a constant 〈X |E〉 standing for the unique solution of E for X . The axioms
for these constants are given in Table 1. In this table, we write 〈tX |E〉 for tX
with, for all Y ∈ V(E), all occurrences of Y in tX replaced by 〈Y |E〉. X , tX
and E stand for an arbitrary variable, an arbitrary BTA term and an arbitrary
guarded recursive specification over BTA, respectively. Side conditions are added
to restrict what X , tX and E stand for.

In the sequel, we will make use of a version of BTA in which the following
additional assumptions relating to A are made: (i) a fixed but arbitrary set F
of foci has been given; (ii) a fixed but arbitrary set M of methods has been
given; (iii) A = {f.m | f ∈ F ,m ∈ M}. These assumptions are based on the
view that the execution environment provides a number of services. Performing
a basic action f.m is taken as making a request to the service named f to process
command m. As usual, we will write B for the set {T,F}.

3 Process Algebra

In this section, we review ACPτ (Algebra of Communicating Processes with
abstraction). This is the process algebra that will be used in Section 4 to make
precise what processes are produced by the threads denoted by closed terms of
BTA with guarded recursion. For a comprehensive overview of ACPτ , the reader
is referred to [4, 10].

In ACPτ , it is assumed that a fixed but arbitrary set A of atomic actions,
with τ, δ /∈ A, and a fixed but arbitrary commutative and associative function
| :A×A → A∪{δ} have been given. The function | is regarded to give the result
of synchronously performing any two atomic actions for which this is possible,
and to give δ otherwise. In ACPτ , τ is a special atomic action, called the silent
step. The act of performing the silent step is considered unobservable. Because
it would otherwise be observable, the silent step is considered an atomic action
that cannot be performed synchronously with other atomic actions.

ACPτ has the following constants and operators:

– for each e ∈ A, the atomic action constant e ;
– the silent step constant τ ;
– the deadlock constant δ ;
– the binary alternative composition operator + ;
– the binary sequential composition operator · ;
– the binary parallel composition operator ‖ ;

3

– the binary left merge operator ⌊⌊ ;
– the binary communication merge operator | ;
– for each H ⊆ A, the unary encapsulation operator ∂H ;
– for each I ⊆ A, the unary abstraction operator τI .

We assume that there are infinitely many variables, including x, y, z. Terms are
built as usual. We use infix notation for the binary operators.

Let p and q be closed ACPτ terms, e ∈ A, and H, I ⊆ A. Intuitively, the
constants and operators to build ACPτ terms can be explained as follows:

– e first performs atomic action e and next terminates successfully;
– τ performs an unobservable atomic action and next terminates successfully;
– δ can neither perform an atomic action nor terminate successfully;
– p+ q behaves either as p or as q, but not both;
– p · q first behaves as p and on successful termination of p it next behaves

as q;
– p ‖ q behaves as the process that proceeds with p and q in parallel;
– p ⌊⌊ q behaves the same as p ‖ q, except that it starts with performing an

atomic action of p;
– p | q behaves the same as p ‖ q, except that it starts with performing an

atomic action of p and an atomic action of q synchronously;
– ∂H(p) behaves the same as p, except that atomic actions fromH are blocked;
– τI(p) behaves the same as p, except that atomic actions from I are turned

into unobservable atomic actions.

The axioms of ACPτ are given in Table 2. CM2–CM3, CM5–CM7, C1–C4,
D1–D4 and TI1–TI4 are actually axiom schemas in which a, b and c stand for
arbitrary constants of ACPτ , and H and I stand for arbitrary subsets of A.

A recursive specification over ACPτ is a set of recursion equations E =
{X = tX | X ∈ V }, where V is a set of variables and each tX is an ACPτ term
containing only variables from V . Let t be an ACPτ term without occurrences
of abstraction operators containing a variable X . Then an occurrence of X in
t is guarded if t has a subterm of the form e · t′ where e ∈ A and t′ is a term
containing this occurrence of X . Let E be a recursive specification over ACPτ .
Then E is a guarded recursive specification if, in each equation X = tX ∈ E:
(i) abstraction operators do not occur in tX and (ii) all occurrences of variables
in tX are guarded or tX can be rewritten to such a term using the axioms of
ACPτ in either direction and/or the equations in E except the equation X = tX
from left to right. We only consider models of ACPτ in which guarded recursive
specifications have unique solutions, such as the models of ACPτ presented in [4].

For each guarded recursive specification E and each variable X that occurs
in E, we introduce a constant 〈X |E〉 standing for the unique solution of E for X .
The axioms for these constants are RDP and RSP given in Table 3. In RDP, we
write 〈tX |E〉 for tX with, for all Y ∈ V(E), all occurrences of Y in tX replaced
by 〈Y |E〉. RDP and RSP are actually axiom schemas in which X stands for an

4

Table 2. Axioms of ACPτ

x+ y = y + x A1

(x+ y) + z = x+ (y + z) A2

x+ x = x A3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x+ δ = x A6

δ · x = δ A7

x ‖ y = x ⌊⌊ y + y ⌊⌊ x+ x | y CM1

a ⌊⌊ x = a · x CM2

a · x ⌊⌊ y = a · (x ‖ y) CM3

(x+ y) ⌊⌊ z = x ⌊⌊ z + y ⌊⌊ z CM4

a · x | b = (a | b) · x CM5

a | b · x = (a | b) · x CM6

a · x | b · y = (a | b) · (x ‖ y) CM7

(x+ y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

x · τ = x B1

x · (τ · (y + z) + y) = x · (y + z) B2

∂H(a) = a if a /∈ H D1

∂H(a) = δ if a ∈ H D2

∂H(x+ y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

τI(a) = a if a /∈ I TI1

τI(a) = τ if a ∈ I TI2

τI(x+ y) = τI(x) + τI(y) TI3

τI(x · y) = τI(x) · τI(y) TI4

a | b = b | a C1

(a | b) | c = a | (b | c) C2

δ | a = δ C3

τ | a = δ C4

Table 3. RDP, RSP and AIP

〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

V

n≥0
πn(x) = πn(y) ⇒ x = y AIP

π0(a) = δ PR1

πn+1(a) = a PR2

π0(a · x) = δ PR3

πn+1(a · x) = a · πn(x) PR4

πn(x+ y) = πn(x) + πn(y) PR5

πn(τ) = τ PR6

πn(τ · x) = τ · πn(x) PR7

arbitrary variable, tX stands for an arbitrary ACPτ term, and E stands for an
arbitrary guarded recursive specification over ACPτ .

Closed terms of ACP with guarded recursion that denote the same process
cannot always be proved equal by means of the axioms of ACP together with
RDP and RSP. To remedy this, we introduce AIP (Approximation Induction
Principle). AIP is based on the view that two processes are identical if their
approximations up to any finite depth are identical. The approximation up to
depth n of a process behaves the same as that process, except that it cannot
perform any further atomic action after n atomic actions have been performed.
AIP is given in Table 3. Here, approximation up to depth n is phrased in terms
of a unary projection operator πn. The axioms for these operators are axioms
PR1–PR7 in Table 3. PR1–PR7 are actually axiom schemas in which a stands

5

Table 4. Defining equations for process extraction operation

|X|c = X

|S|c = stop

|D|c = i · δ

|t1 E f.mD t2|
c = sf (m) · (rf (T) · |t1|

c + rf (F) · |t2|
c)

|〈X|E〉|c = 〈X| {Y = |tY |c | Y = tY ∈ E}〉

for arbitrary constants of ACPτ different from τ and n stands for an arbitrary
natural number.

We will write
∑

i∈S pi, where S = {i1, . . . , in} and pi1 , . . . , pin are ACPτ

terms, for pi1 + . . .+ pin . The convention is that
∑

i∈S pi stands for δ if S = ∅.
We will often write X for 〈X |E〉 if E is clear from the context. It should be
borne in mind that, in such cases, we use X as a constant.

4 Process Extraction

In this section, we use ACPτ with guarded recursion to make mathematically
precise what processes are produced by the threads denoted by closed terms of
BTA with guarded recursion.

For that purpose, A and | are taken such that the following conditions are
satisfied:

A ⊇ {sf (d) | f ∈ F , d ∈ M∪ B} ∪ {rf (d) | f ∈ F , d ∈ M∪ B} ∪ {stop, i}

and for all f ∈ F , d ∈ M∪ B, and e ∈ A:

sf(d) | rf (d) = i ,

sf(d) | e = δ if e 6= rf(d) ,

e | rf (d) = δ if e 6= sf (d) ,

stop | e = δ ,

i | e = δ .

The process extraction operation | | determines, for each closed term p of
BTA with guarded recursion, a closed term of ACPτ with guarded recursion
that denotes the process produced by the thread denoted by p. The process
extraction operation | | is defined by |p| = τ{stop}(|p|

c), where | |c is defined by
the equations given in Table 4 (for f ∈ F and m ∈ M).

Two atomic actions are involved in performing a basic action of the form f.m:
one for sending a request to process command m to the service named f and
another for receiving a reply from that service upon completion of the processing.
For each closed term p of BTA with guarded recursion, |p|c denotes a process
that in the event of termination performs a special termination action just before
termination. Abstracting from this termination action yields the process denoted
by |p|. Some atomic actions introduced above are not used in the definition of
the process extraction operation for BTA. Those atomic actions are commonly

6

used in the definition of the process extraction operation for extensions of BTA
in which operators for thread-service interaction occur, see e.g. [8].

Let p be a closed term of BTA with guarded recursion. Then we say that |p|
is the process produced by p.

The process extraction operation preserves the axioms of BTA with guarded
recursion. Roughly speaking, this means that the translations of these axioms
are derivable from the axioms of ACPτ with guarded recursion. Before we make
this fully precise, we have a closer look at the axioms of BTA with guarded
recursion.

A proper axiom is an equation or a conditional equation. In Table 1, we
do not find proper axioms. Instead of proper axioms, we find axiom schemas
without side conditions and axiom schemas with side conditions. The axioms of
BTA with guarded recursion are obtained by replacing each axiom schema by
all its instances.

We define a function | | from the set of all equations and conditional equations
of BTA with guarded recursion to the set of all equations of ACPτ with guarded
recursion as follows:

|t1 = t2| = |t1| = |t2| ,

|E ⇒ t1 = t2| = {|t′1| = |t′2| | t
′
1 = t′2 ∈ E} ⇒ |t1| = |t2| .

Proposition 1. Let φ be an axiom of BTA with guarded recursion. Then |φ| is
derivable from the axioms of ACPτ with guarded recursion.

Proof. The proof is trivial. ⊓⊔

Proposition 1 would go through if no abstraction of the above-mentioned special
termination action was made. Notice further that ACPτ without the silent step
constant and the abstraction operator, better known as ACP, would suffice if no
abstraction of the special termination action was made.

5 A Simple Protocol

In this section, we consider a very simple transmission protocol for passing in-
structions from a thread to a remote execution environment.

At the location of the thread concerned, two atomic actions are involved
in performing a basic action: one for sending a message containing the basic
action via a transmission channel to a receiver at the location of the execution
environment and another for receiving a reply via a transmission channel from
the receiver upon completion of the processing at the location of the execution
environment. The receiver waits until a message containing a basic action can
be received. Upon reception of a message containing a basic action f.m, the
receiver sends a request to process command m to the service named f at the
location of the execution environment. Next, the receiver waits until a reply from
that service can be received. Upon reception of a reply, the receiver forwards the

7

Table 5. Process extraction for remotely controlled threads

|X|rct = X

|S|rct = s1(stop)

|D|rct = s1(dead)

|t1 E aD t2|rct = s1(a) · (r4(T) · |t1|rct + r4(F) · |t2|rct)

|〈X|E〉|rct = 〈X| {Y = |tY |rct | Y = tY ∈ E}〉

reply to the thread. Deadlocking and terminating are treated like performing
basic actions.

We write A′ for the set A ∪ {stop, dead}.
For the purpose of describing the very simple transmission protocol outlined

above in ACPτ , A and | are taken such that, in addition to the conditions
mentioned at the beginning of Section 4, the following conditions are satisfied:

A ⊇ {si(d) | i ∈ {1, 2} , d ∈ A′} ∪ {ri(d) | i ∈ {1, 2} , d ∈ A′}

∪ {si(r) | i ∈ {3, 4} , r ∈ B} ∪ {ri(r) | i ∈ {3, 4} , r ∈ B} ∪ {j}

and for all i ∈ {1, 2}, j ∈ {3, 4}, d ∈ A′, r ∈ B, and e ∈ A:

si(d) | ri(d) = j ,

si(d) | e = δ if e 6= ri(d) ,

e | ri(d) = δ if e 6= si(d) ,

j | e = δ .

sj(r) | rj(r) = j ,

sj(r) | e = δ if e 6= rj(r) ,

e | rj(r) = δ if e 6= sj(r) ,

We introduce a process extraction operation | |rct which determines, for each
closed term p of BTA with guarded recursion, a closed term of ACPτ with
guarded recursion that denotes the process produced by the thread denoted by
p in the case where the thread is remotely controlled. This operation is defined
by the equations given in Table 5 (for a ∈ A).

Let p be a closed term of BTA with guarded recursion. Then the process
representing the remotely controlled thread p is described by

∂H(|p|rct ‖ CHA ‖ CHR ‖ RCV) ,

where

CHA =
∑

d∈A′

r1(d) · s2(d) · CHA ,

CHR =
∑

r∈B

r3(r) · s4(r) · CHR ,

RCV =
∑

f.m∈A′

r2(f.m) · sf (m) · (rf (T) · s3(T) + rf (F) · s3(F)) · RCV

+ r2(stop) + r2(dead) · i · δ

8

and

H = {si(d) | i ∈ {1, 2} , d ∈ A′} ∪ {ri(d) | i ∈ {1, 2} , d ∈ A′}

∪ {si(r) | i ∈ {3, 4} , r ∈ B} ∪ {ri(r) | i ∈ {3, 4} , r ∈ B} .

CHA is the transmission channel for messages containing basic actions, CHR is
the transmission channel for replies, and RCV is the receiver.

If we abstract from all atomic actions for sending and receiving via the
transmission channels CHA and CHR, then the processes denoted by |p| and
∂H(|p|rct ‖ CHA ‖CHR ‖ RCV) are equal modulo an initial silent step.

Theorem 1. For each closed term p of BTA with guarded recursion:

τ · |p| = τ · τ{j}(∂H(|p|rct ‖ CHA ‖ CHR ‖ RCV)) .

Proof. By AIP, it is sufficient to prove that for all n ≥ 0:

πn(τ · |p|) = πn(τ · τ{j}(∂H(|p|rct ‖ CHA ‖ CHR ‖ RCV))) .

This is easily proved by induction on n and in the inductive step by case dis-
tinction on the structure of p, using the axioms of ACPτ and RDP. ⊓⊔

6 A More Complex Protocol

In this section, we consider a more complex transmission protocol for passing
instructions from a thread to a remote execution environment.

The general idea of this protocol is that:

– while the last basic action performed by the thread in question is processed
at the location of the receiver, the first basic actions of the two ways in which
the thread may proceed are transmitted together to the receiver;

– while the choice between those two basic actions is made by the receiver on
the basis of the reply produced at the completion of the processing, the reply
is transferred to the thread.

To simplify the description of the protocol, the following extensions of ACP
from [1] will be used:

– We will use conditionals. The expression p⊳ b⊲ q, is to be read as if b then
p else q. The defining equations are

x⊳T⊲ y = x and x⊳F⊲ y = y .

– We will use the generalization of restricted early input action prefixing to
process prefixing. Restricted early input action prefixing is defined by the
equation erDi (u) ; t =

∑
d∈D ri(d) · t[d/u]. We use the extension to processes

to express binary parallel input: (erD1

i (u1)‖ er
D2

j (u2)) ;P . For this particular
case, we have the following equation:

(erD1

i (u1) ‖ er
D2

j (u2)) ; t =
∑

d1∈D1

ri(d1) · (er
D2

j (u2) ; t[d1/u1])

+
∑

d2∈D2

rj(d2) · (er
D1

i (u1) ; t[d2/u2]) .

9

Table 6. Alternative process extraction for remotely controlled threads

|X|rct2 = X

|S|rct2 = s1(stop)

|D|rct2 = s1(dead)

|t1 E aD t2|rct2 = s1(a, init(t1), init(t2)) · (r4(T) · |t1|
′
rct2 + r4(F) · |t2|

′
rct2)

|〈X|E〉|rct2 = 〈X| {Y = |tY |rct2 | Y = tY ∈ E}〉

|X|′rct2 = X

|S|′rct2 = s1(void)

|D|′rct2 = s1(void)

|t1 E aD t2|
′
rct2 = s1(init(t1), init(t2)) · (r4(T) · |t1|

′
rct2 + r4(F) · |t2|

′
rct2)

|〈X|E〉|′rct2 = 〈X| {Y = |tY |′rct2 | Y = tY ∈ E}〉

init(S) = stop

init(D) = dead

init(t1 E aD t2) = a

init(〈X|E〉) = init(〈tX |E〉) if X = tX ∈ E

We write A′′
2 for the set A′ ×A′, A′′

3 for the set A×A′ ×A′, and A′′ for the
set A′′

2 ∪ A′′
3 ∪ {stop, dead, void}.

For the purpose of describing the more complex transmission protocol out-
lined above in ACPτ , A and | are taken such that, in addition to the conditions
mentioned at the beginning of Section 4, the following conditions are satisfied:

A ⊇ {si(d) | i ∈ {1, 2} , d ∈ A′′} ∪ {ri(d) | i ∈ {1, 2} , d ∈ A′′}

∪ {si(r) | i ∈ {3, 4} , r ∈ B} ∪ {ri(r) | i ∈ {3, 4} , r ∈ B} ∪ {j}

and for all i ∈ {1, 2}, j ∈ {3, 4}, d ∈ A′′, r ∈ B, and e ∈ A:

si(d) | ri(d) = j ,

si(d) | e = δ if e 6= ri(d) ,

e | ri(d) = δ if e 6= si(d) ,

j | e = δ .

sj(r) | rj(r) = j ,

sj(r) | e = δ if e 6= rj(r) ,

e | rj(r) = δ if e 6= sj(r) ,

We introduce a process extraction operation | |rct2 which determines, for
each closed term p of BTA with guarded recursion, a closed term of ACPτ with
guarded recursion that denotes the process produced by the thread denoted by
p in the case where the thread is remotely controlled by means of the alternative
transmission protocol. This operation is defined by the equations given in Table 6
(for a ∈ A).

Let p be a closed term of BTA with guarded recursion. Then the process
representing the remotely controlled thread p is described by

∂H(|p|rct2 ‖ CHA2 ‖ CHR ‖ RCV2) ,

10

where

CHA2 =
∑

d∈A′′

r1(d) · s2(d) · CHA2 ,

CHR =
∑

r∈B

r3(r) · s4(r) · CHR ,

RCV2 =
∑

(f.m,a,a′)∈A′′

3

r2(f.m, a, a′) · sf (m)

· (rf (T) · RCV
′
2
(T, a) + rf (F) · RCV

′
2
(F, a′))

+ r2(stop) + r2(dead) · i · δ ,

RCV ′
2
(r, f.m) = (s3(r) ‖ sf (m)) · RCV ′′

2
,

RCV ′
2
(r, stop) = r2(void) ,

RCV ′
2
(r, dead) = r2(void) · i · δ ,

RCV ′′
2

= (er
A′′

2

2 (u, v) ‖ erBf (β)) ; (RCV
′
2
(β, u)⊳β⊲ RCV ′

2
(β, v))

and

H = {si(d) | i ∈ {1, 2} , d ∈ A′′} ∪ {ri(d) | i ∈ {1, 2} , d ∈ A′′}

∪ {si(r) | i ∈ {3, 4} , r ∈ B} ∪ {ri(r) | i ∈ {3, 4} , r ∈ B} .

Notice that the first cycle of the alternative transmission protocol differs
fairly from all subsequent ones. This difference gives rise to a slight complication
in the proof of Theorem 2 below.

If we abstract from all atomic actions for sending and receiving via the
transmission channels CHA2 and CHR, then the processes denoted by |p| and
∂H(|p|rct2 ‖ CHA2 ‖ CHR ‖ RCV2) are equal modulo an initial silent step.

Theorem 2. For each closed term p of BTA with guarded recursion:

τ · |p| = τ · τ{j}(∂H(|p|rct2 ‖ CHA2 ‖ CHR ‖ RCV2)) .

Proof. By AIP, it is sufficient to prove that for all n ≥ 0:

πn(τ · |p|) = πn(τ · τ{j}(∂H(|p|rct2 ‖ CHA2 ‖ CHR ‖ RCV2))) .

For n = 0, 1, 2, this is easily proved. For n ≥ 3, it is easily proved in the cases
p ≡ S and p ≡ D, but in the case p ≡ p1 E f.mD p2 we get:

τ · sf(m) · (rf (T) · πn−2(|p1|) + rf (F) · πn−2(|p2|))

= τ · sf (m)

· (rf (T) · πn−2(τ{j}(∂H(|p1|′rct2 ‖ CHA2 ‖ CHR ‖ RCV ′
2
(T, init(p1)))))

+ rf (F) · πn−2(τ{j}(∂H(|p2|′rct2 ‖ CHA2 ‖ CHR ‖ RCV ′
2
(F, init(p2)))))) .

We have that

πn−2(τ{j}(∂H(|p′|′rct2 ‖ CHA2 ‖ CHR ‖ RCV ′
2
(T, init(p′)))))

= πn−2(τ{j}(∂H(|p′|′rct2 ‖ CHA2 ‖ CHR ‖ RCV ′
2
(F, init(p′)))))

11

in the cases p′ ≡ S and p′ ≡ D, but not in the case p′ ≡ p′1E f ′.m′Dp′2. Therefore,
we cannot prove

πn(τ · |p|) = πn(τ · τ{j}(∂H(|p|rct2 ‖ CHA2 ‖ CHR ‖ RCV2)))

by induction on n. However, in the case p′ ≡ p′1 E f ′.m′D p′2 we have that

rf(r) · πn−2(|p′|)

= rf (r) · sf ′(m′) · πn−3(rf ′(T) · |p′1|+ rf ′(F) · |p′2|)

and

rf(r) · πn−2(τ{j}(∂H(|p′|′rct2 ‖ CHA2 ‖ CHR ‖ RCV ′
2
(r, f ′.m′))))

= rf (r) · sf ′(m′) · πn−3(τ{j}(∂H(|p′|′rct2 ‖ CHA2 ‖ CHR ‖ RCV ′′
2
))) .

Therefore, it is sufficient to prove that for all closed terms p1 and p2 of BTA
with guarded recursion, f ∈ F and m ∈ M, for all n ≥ 0:

πn(τ · (rf (T) · |p1|+ rf (F) · |p2|))

= πn(τ · τ{j}(∂H(|p1 E f.mD p2|′rct2 ‖ CHA2 ‖ CHR ‖ RCV ′′
2
))) .

This is easily proved by induction on n and in the inductive step by case dis-
tinction on the structure of p1 and p2, using the axioms of ACPτ , RDP and the
axioms concerning process prefixing and conditionals given in [1]. ⊓⊔

7 Conclusions

Using ACPτ , we have described a very simple transmission protocol for pass-
ing instructions from a thread to a remote execution environment and a more
complex one that is more efficient, and we have verified the correctness of these
protocols. In this way, we have clarified the phenomenon of remotely controlled
program behaviours to a certain extent.

One option for future work is to describe the protocols concerned in a version
of ACP with discrete relative timing (see e.g. [2, 3]) and then to show that the
more complex one leads to a speed-up indeed. Another option for future work is
to devise, describe and analyse more efficient protocols, such as protocols that
allow for two or more instructions to be processed in parallel.

By means of the protocols, we have presented a way to deal with the in-
struction streams that turn up with remotely controlled program behaviours.
By that we have ascribed a sense to the term instruction stream which makes
clear that an instruction stream is dynamic by nature, in contradistinction with
an instruction sequence. We have not yet been able to devise a basic definition
of instruction streams.

12

References

1. Baeten, J.C.M., Bergstra, J.A.: On sequential composition, action prefixes and
process prefix. Formal Aspects of Computing 6(3), 250–268 (1994)

2. Baeten, J.C.M., Bergstra, J.A.: Discrete time process algebra. Formal Aspects of
Computing 8(2), 188–208 (1996)

3. Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. Monographs in
Theoretical Computer Science, An EATCS Series. Springer-Verlag, Berlin (2002)

4. Baeten, J.C.M., Weijland, W.P.: Process Algebra, Cambridge Tracts in Theoretical

Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)
5. Bergstra, J.A., Bethke, I.: Polarized process algebra and program equivalence. In:

J.C.M. Baeten, J.K. Lenstra, J. Parrow, G.J. Woeginger (eds.) Proceedings 30th
ICALP, Lecture Notes in Computer Science, vol. 2719, pp. 1–21. Springer-Verlag
(2003)

6. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. In-
formation and Control 60(1/3), 109–137 (1984)

7. Bergstra, J.A., Loots, M.E.: Program algebra for sequential code. Journal of Logic
and Algebraic Programming 51(2), 125–156 (2002)

8. Bergstra, J.A., Middelburg, C.A.: Thread algebra with multi-level strategies. Fun-
damenta Informaticae 71(2/3), 153–182 (2006)

9. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. Journal of the ACM 31(3), 560–599 (1984)

10. Fokkink, W.J.: Introduction to Process Algebra. Texts in Theoretical Computer
Science, An EATCS Series. Springer-Verlag, Berlin (2000)

11. Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency.
Journal of the ACM 32(1), 137–161 (1985)

12. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

13. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

13

