Abstract
The ubiquity of smartphones and other location-aware hand-held devices has resulted in a dramatic increase in popularity of location-based services (LBS) tailored to user locations. The comfort of LBS comes with a privacy cost. Various distressing privacy violations caused by sharing sensitive location information with potentially malicious services have highlighted the importance of location privacy research aiming to protect user privacy while interacting with LBS.
The anonymity and cloaking-based approaches proposed to address this problem cannot provide stringent privacy guarantees without incurring costly computation and communication overhead. Furthermore, they mostly require a trusted intermediate anonymizer to protect a user’s location information during query processing. In this chapter, we review a set of fundamental approaches based on private information retrieval to process range and k-nearest neighbor queries, the elemental queries used in many Location Based Services, with significantly stronger privacy guarantees as opposed to cloaking or anonymity approaches.
This research has been funded in part by NSF grants IIS-0238560 (PECASE), IIS-0534761, IIS-0742811 and CNS-0831505 (CyberTrust), and in part from the METRANS Transportation Center, under grants from USDOT and Caltrans. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sweeney, L.: k-Anonymity: A Model for Protecting Privacy. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5), 557–570 (2002)
Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and temporal cloaking. In: MobiSys 2003, San Francisco, CA (2003)
Gruteser, M., Liu, X.: Protecting privacy in continuous location-tracking applications. IEEE Security & Privacy 2(2), 28–34 (2004)
Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: Query processing for location services without compromising privacy. In: VLDB 2006, Seoul, Korea, pp. 763–774 (2006)
Bettini, C., Wang, X.S., Jajodia, S.: Protecting privacy against location-based personal identification. In: Jonker, W., Petković, M. (eds.) SDM 2005. LNCS, vol. 3674, pp. 185–199. Springer, Heidelberg (2005)
Gedik, B., Liu, L.: A customizable k-anonymity model for protecting location privacy. In: ICDCS 2005, Columbus, OH, pp. 620–629 (2005)
Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Pervasive Computing 2(1), 46–55 (2003)
Khoshgozaran, A., Shahabi, C.: Blind evaluation of nearest neighbor queries using space transformation to preserve location privacy. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 239–257. Springer, Heidelberg (2007)
Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.: Private queries in location based services: anonymizers are not necessary. In: SIGMOD 2008, Vancouver, BC, Canada, pp. 121–132 (2008)
Khoshgozaran, A., Shirani-Mehr, H., Shahabi, C.: SPIRAL, a scalable private information retrieval approach to location privacy. In: The 2nd International Workshop on Privacy-Aware Location-based Mobile Services (PALMS) in conjunction with MDM 2008, Beijing, China (2008)
Hengartner, U.: Hiding location information from location-based services. In: MDM 2007, Mannheim, Germany, pp. 268–272 (2007)
Yiu, M.L., Jensen, C.S., Huang, X., Lu, H.: Spacetwist: Managing the trade-offs among location privacy, query performance, and query accuracy in mobile services. In: ICDE 2008, Cancún, México, pp. 366–375 (2008)
Zhong, S., Li, L., Liu, Y.G., Yang, Y.R.: Privacy-preserving location-based services for mobile users in wireless networks. Technical report, Yale Univerisity (2004)
Indyk, P., Woodruff, D.P.: Polylogarithmic private approximations and efficient matching. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 245–264. Springer, Heidelberg (2006)
Zhong, G., Goldberg, I., Hengartner, U.: Louis, lester and pierre: Three protocols for location privacy. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 62–76. Springer, Heidelberg (2007)
Khoshgozaran, A., Shahabi, C., Shirani-Mehr, H.: Location privacy; moving beyond k-anonymity, cloaking and anonymizers. Technical report, University of Southern California (2008)
Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: FOCS, pp. 41–50 (1995)
Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-private information retrieval. In: FOCS, pp. 364–373 (1997)
Sion, R.: On the computational practicality of private information retrieval. In: Proceedings of the Network and Distributed Systems Security Symposium, 2007. Stony Brook Network Security and Applied Cryptography Lab. Tech. Report (2007)
Asonov, D.: Querying Databases Privately. LNCS, vol. 3128. Springer, Heidelberg (2004)
Asonov, D., Freytag, J.C.: Almost optimal private information retrieval. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 209–223. Springer, Heidelberg (2003)
Iliev, A., Smith, S.W.: Private information storage with logarithm-space secure hardware. In: International Information Security Workshops, Toulouse, France, pp. 199–214 (2004)
Smith, S.W., Safford, D.: Practical private information retrieval with secure coprocessors. Technical report, IBM (August 2000)
Gertner, Y., Goldwasser, S., Malkin, T.: A random server model for private information retrieval or how to achieve information theoretic pir avoiding database replication. In: Rolim, J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 200–217. Springer, Heidelberg (1998)
Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers’ computation in private information retrieval: Pir with preprocessing. J. Cryptology 17(2), 125–151 (2004)
Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000)
Bhattacharjee, B., Abe, N., Goldman, K., Zadrozny, B., Chillakuru, V.R., del Carpio, M., Apte, C.: Using secure coprocessors for privacy preserving collaborative data mining and analysis. In: DaMoN 2006, Chicago, IL, pp. 1–7 (2006)
Jiang, S., Smith, S., Minami, K.: Securing web servers against insider attack. In: ACSAC 2001, Washington, DC, USA, pp. 265–276 (2001)
Kalashnikov, D.V., Prabhakar, S., Hambrusch, S.E.: Main memory evaluation of monitoring queries over moving objects. Distrib. Parallel Databases 15(2), 117–135 (2004)
Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: Scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases. In: ICDE 2005, Tokyo, Japan, pp. 643–654 (2005)
Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects. In: ICDE 2005, Tokyo, Japan, pp. 631–642 (2005)
Hilbert, D.: Uber die stetige abbildung einer linie auf ein flachenstuck. Math. Ann. 38, 459–460 (1891)
Faloutsos, C., Roseman, S.: Fractals for secondary key retrieval. In: PODS 1989: Proceedings of the eighth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, New York, NY, USA, pp. 247–252 (1989)
Flath, D.E.: Introduction to Number Theory. John Wiley & Sons, Chichester (1988)
Berg, M.d., Kreveld, M.v., Overmars, M., Schwarzkopf, O.: Computational geometry: Algorithms and applications. Springer, Heidelberg (1997)
Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In: STOC 1997, New York, NY, USA, pp. 294–303 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Khoshgozaran, A., Shahabi, C. (2009). Private Information Retrieval Techniques for Enabling Location Privacy in Location-Based Services. In: Bettini, C., Jajodia, S., Samarati, P., Wang, X.S. (eds) Privacy in Location-Based Applications. Lecture Notes in Computer Science, vol 5599. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03511-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-03511-1_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03510-4
Online ISBN: 978-3-642-03511-1
eBook Packages: Computer ScienceComputer Science (R0)