Abstract
The increasing availability of space-time trajectories left by location-aware devices is expected to enable novel classes of applications where the discovery of consumable, concise, and actionable knowledge is the key step. However, the analysis of mobility data is a critic task by the privacy point of view: in fact, the peculiar nature of location data might enable intrusive inferences in the life of the individuals whose data is analyzed. It is thus important to develop privacy-preserving techniques for the publication and the analysis of mobility data.
This chapter provides a brief survey of the research on anonymity preserving data publishing of moving objects databases.
While only few papers so far have tackled the problem of anonymity in the off-line case of publication of a moving objects database, rather large body of work has been developed for anonymity on relational data on one side, and for location privacy in the on-line, dynamic context of location based services (LBS), on the other side. In this chapter we first briefly review the basic concepts of k-anonymity on relational data. Then we focus on the body of research about privacy in LBS: we try to identify some useful concepts for our static context, while highlighting the differences, and discussing the inapplicability of some of the LBS solutions to the static case. Next we present in details some of the papers that recently have attacked the problem of moving objects anonymization in the static context. We discuss in details the problems addressed and the solutions proposed, highlighting merits and limits of each work, as well as the various problems still open.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Giannotti, F., Pedreschi, D. (eds.): Mobility, Data Mining and Privacy - Geographic Knowledge Discovery. Springer, Heidelberg (2008)
Lee, J.G., Han, J., Li, X.: Trajectory outlier detection: A partition-and-detect framework. In: Proc. of the 24th IEEE Int. Conf. on Data Engineering (ICDE 2008) (2008)
Lee, J.G., Han, J., Li, X., Gonzalez, H.: raClass: trajectory classification using hierarchical region-based and trajectory-based clustering. In: Proc. of the 34th Int. Conf. on Very Large Databases (VLDB 2008) (2008)
Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: Proc. of the 2007 ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2007) (2007)
Li, X., Han, J., Kim, S., Gonzalez, H.: Anomaly detection in moving object. In: Intelligence and Security Informatics, Techniques and Applications. Studies in Computational Intelligence, vol. 135. Springer, Heidelberg (2008)
Li, X., Han, J., Lee, J.G., Gonzalez, H.: Traffic density-based discovery of hot routes in road networks. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 441–459. Springer, Heidelberg (2007)
Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. Journal of Intelligent Information Systems 27(3), 267–289 (2006)
Bettini, C., Wang, X.S., Jajodia, S.: Protecting Privacy Against Location-Based Personal Identification. In: Jonker, W., Petković, M. (eds.) SDM 2005. LNCS, vol. 3674, pp. 185–199. Springer, Heidelberg (2005)
Terrovitis, M., Mamoulis, N.: Privacy preservation in the publication of trajectories. In: Proc. of the 9th Int. Conf. on Mobile Data Management (MDM 2008) (2008)
Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information (abstract). In: Proc. of the 17th ACM Symp. on Principles of Database Systems (PODS 1998) (1998)
Samarati, P., Sweeney, L.: Protecting Privacy when Disclosing Information: k-Anonymity and its Enforcement Through Generalization and Suppresion. In: Proc. of the IEEE Symp. on Research in Security and Privacy, pp. 384–393 (1998)
Sweeney, L.: k-anonymity privacy protection using generalization and suppression. International Journal on Uncertainty Fuzziness and Knowledge-based Systems 10(5) (2002)
Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: privacy beyond k-anonymity. In: Proc. of the 22nd IEEE Int. Conf. on Data Engineering (ICDE 2006) (2006)
Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.: Anonymizing tables. In: Eiter, T., Libkin, L. (eds.) ICDT 2005, vol. 3363, pp. 246–258. Springer, Heidelberg (2005)
Meyerson, A., Willliams, R.: On the complexity of optimal k-anonymity. In: Proc. of the 23rd ACM Symp. on Principles of Database Systems (PODS 2004) (2004)
Abul, O., Bonchi, F., Nanni, M.: \(\mathcal{N}\)ever \(\mathcal{W}\)alk \(\mathcal{A}\)lone: Uncertainty for anonymity in moving objects databases. In: Proc. of the 24nd IEEE Int. Conf. on Data Engineering (ICDE 2008) (2008)
Nergiz, E., Atzori, M., Saygin, Y.: Towards trajectory anonymization: a generalization-based approach. In: Proc. of ACM GIS Workshop on Security and Privacy in GIS and LBS (2008)
Yarovoy, R., Bonchi, F., Lakshmanan, L.V.S., Wang, W.H.: Anonymizing moving objects: How to hide a MOB in a crowd? In: Proc. of the 12th Int. Conf. on Extending Database Technology (EDBT 2009) (2009)
Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001)
Wong, R.C.W., Li, J., Fu, A.W.C., Wang, K. (α, k)-anonymity: an enhanced k-anonymity model for privacy preserving data publishing. In: Proc. of the 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2006) (2006)
Fung, B.C.M., Wang, K., Yu, P.S.: Top-down specialization for information and privacy preservation. In: Proc. of the 21st IEEE Int. Conf. on Data Engineering (ICDE 2005) (2005)
LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: Efficient full-domain k-anonymity. In: Proc. of the 2005 ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2005) (2005)
Domingo-Ferrer, J., Torra, V.: Ordinal, continuous and heterogeneous -anonymity through microaggregation. Data Min. Knowl. Discov. 11(2), 195–212 (2005)
Defays, D., Nanopoulos, P.: Panels of enterprises and confidentiality: the small aggregates method. In: Proc. of 92 Symposium on Design and Analysis of Longitudinal Surveys, Ottawa, Statistics Canada, pp. 195–204 (1993)
Domingo-Ferrer, J., Mateo-Sanz, J.M.: Practical data-oriented microaggregation for statistical disclosure control. IEEE Trans. Knowl. Data Eng. 14(1), 189–201 (2002)
Torra, V.: Microaggregation for categorical variables: A median based approach. In: Domingo-Ferrer, J., Torra, V. (eds.) PSD 2004. LNCS, vol. 3050, pp. 162–174. Springer, Heidelberg (2004)
Aggarwal, G., Feder, T., Kenthapadi, K., Khuller, S., Panigrahy, R., Thomas, D., Zhu, A.: Achieving anonymity via clustering. In: Proc. of the 25th ACM Symp. on Principles of Database Systems (PODS 2006) (2006)
Li, J., Wong, R.C.W., Fu, A.W.C., Pei, J.: Achieving k-anonymity by clustering in attribute hierarchical structures. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 405–416. Springer, Heidelberg (2006)
Byun, J.W., Kamra, A., Bertino, E., Li, N.: Efficient k-anonymization using clustering techniques. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 188–200. Springer, Heidelberg (2007)
Aggarwal, C.C., Yu, P.S.: A condensation approach to privacy preserving data mining. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 183–199. Springer, Heidelberg (2004)
Aggarwal, C.C., Yu, P.S.: On anonymization of string data. In: Proc. of the 2007 SIAM Int. Conf. on Data Mining (2007)
Aggarwal, C.C.: On k-anonymity and the curse of dimensionality. In: Proc. of the 31st Int. Conf. on Very Large Databases (VLDB 2005) (2005)
Atzori, M.: Weak k-anonymity: A low-distortion model for protecting privacy. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 60–71. Springer, Heidelberg (2006)
Xiao, X., Tao, Y.: Anatomy: Simple and effective privacy preservation. In: Proc. of the 32nd Int. Conf. on Very Large Databases (VLDB 2006) (2006)
Kifer, D., Gehrke, J.: Injecting utility into anonymized datasets. In: Proc. of the 2006 ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2006) (2006)
Øhrn, A., Ohno-Machado, L.: Using boolean reasoning to anonymize databases. Artificial Intelligence in Medicine 15(3), 235–254 (1999)
Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: Proc. of the 23rd IEEE Int. Conf. on Data Engineering (ICDE 2007) (2007)
Bayardo, R., Agrawal, R.: Data privacy through optimal k-anonymity. In: Proc. of the 21st IEEE Int. Conf. on Data Engineering (ICDE 2005) (2005)
LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In: Proc. of the 22nd IEEE Int. Conf. on Data Engineering (ICDE 2006) (2006)
Gruteser, M., Grunwald, D.: Anonymous Usage of Location-Based Services Through Spatial and Temporal Cloaking. In: Proc. of the First Int. Conf. on Mobile Systems, Applications, and Services (MobiSys 2003) (2003)
Gedik, B., Liu, L.: Location Privacy in Mobile Systems: A Personalized Anonymization Model. In: Proc. of the 25th Int. Conf. on Distributed Computing Systems (ICDCS 2005) (2005)
Domingo-Ferrer, J.: Microaggregation for database and location privacy. In: Etzion, O., Kuflik, T., Motro, A. (eds.) NGITS 2006. LNCS, vol. 4032, pp. 106–116. Springer, Heidelberg (2006)
Kido, H., Yanagisawa, Y., Satoh, T.: Protection of Location Privacy using Dummies for Location-based Services. In: Proc. of the 21st IEEE Int. Conf. on Data Engineering (ICDE 2005) (2005)
Beresford, A.R., Stajano, F.: Mix Zones: User Privacy in Location-aware Services. In: Proc. of the Second IEEE Conf. on Pervasive Computing and Communications Workshops (PERCOM 2004) (2004)
Gruteser, M., Liu, X.: Protecting Privacy in Continuous Location-Tracking Applications. IEEE Security & Privacy Magazine 2(2), 28–34 (2004)
Bettini, C., Wang, X.S., Jajodia, S.: Testing complex temporal relationships involving multiple granularities and its application to data mining. In: Proc. of the 15th ACM Symp. on Principles of Database Systems (PODS 1996) (1996)
Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: Proc. of the 13th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2007) (2007)
Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Managing uncertainty in moving objects databases. ACM Trans. Database Syst. 29(3), 463–507 (2004)
Clifton, C., Marks, D.: Security and privacy implications of data mining. In: Proc. of the 1996 ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 1996), February 1996, pp. 15–19 (1996)
O’Leary, D.E.: Knowledge discovery as a threat to database security. In: Piatetsky-Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 507–516. AAAI/MIT Press (1991)
Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proc. of the 2000 ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2000), pp. 439–450 (2000)
Clifton, C., Kantarcioglu, M., Vaidya, J.: Defining privacy for data mining. In: Natural Science Foundation Workshop on Next Generation Data Mining, November 2002, pp. 126–133 (2002)
Verykios, V.S., Bertino, E., Fovino, I.N., Provenza, L.P., Saygin, Y., Theodoridis, Y.: State-of-the-art in privacy preserving data mining. ACM SIGMOD Record 33(1), 50–57 (2004)
Inan, A., Saygin, Y.: Privacy-preserving spatio-temporal clustering on horizontally partitioned data. In: Tjoa, A.M., Trujillo, J. (eds.) DAWAK 2006. LNCS, vol. 4081, pp. 459–468. Springer, Heidelberg (2006)
Abul, O., Atzori, M., Bonchi, F., Giannotti, F.: Hiding sequences. In: Proceedings of the Third ICDE International Workshop on Privacy Data Management (PDM 2007) (2007)
Abul, O., Atzori, M., Bonchi, F., Giannotti, F.: Hiding sensitive trajectory patterns. In: ICDM 2007, pp. 693–698 (2007)
Bonchi, F., Saygin, Y., Verykios, V.S., Atzori, M., Gkoulalas-Divanis, A., Kaya, S.V., Savas, E.: Privacy in spatiotemporal data mining. In: [1], pp. 297–333
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bonchi, F. (2009). Privacy Preserving Publication of Moving Object Data. In: Bettini, C., Jajodia, S., Samarati, P., Wang, X.S. (eds) Privacy in Location-Based Applications. Lecture Notes in Computer Science, vol 5599. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03511-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-03511-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03510-4
Online ISBN: 978-3-642-03511-1
eBook Packages: Computer ScienceComputer Science (R0)