Skip to main content

A Machine Learning Approach to Off-Line Signature Verification Using Bayesian Inference

  • Conference paper
Computational Forensics (IWCF 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5718))

Included in the following conference series:

  • 1048 Accesses

Abstract

A machine learning approach to off-line signature verification is presented. The prior distributions are determined from genuine and forged signatures of several individuals. The task of signature verification is a problem of determining genuine-class membership of a questioned (test) signature. We take a 3-step, writer independent approach: 1) Determine the prior parameter distributions for means of both “genuine vs. genuine” and “forgery vs. known” classes using a distance metric. 2) Enroll n genuine and m forgery signatures for a particular writer and calculate both the posterior class probabilities for both classes. 3) When evaluating a questioned signature, determine the probabilities for each class and choose the class with bigger probability. By using this approach, performance over other approaches to the same problem is dramatically improved, especially when the number of available signatures for enrollment is small. On the NISDCC dataset, when enrolling 4 genuine signatures, the new method yielded a 12.1% average error rate, a significant improvement over a previously described Bayesian method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sabourin, R., Plamondon, R.: Preprocessing of handwritten signatures from image gradient analysis. In: Proceedings of the 8th International Conference on Pattern Recognition, pp. 576–579 (1986)

    Google Scholar 

  2. Sabourin, R., Genest, G., Prteux, F.J.: Off-line signature verification by local granulometric size distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 976–988 (1997)

    Article  Google Scholar 

  3. Srihari, S.N., Xu, A., Kalera, M.K.: Learning strategies and classification methods for off-line signature verification. In: Proceedings of the 7th International Workshop on Frontiers in handwriting recognition (IWHR), pp. 161–166 (2004)

    Google Scholar 

  4. Srihari, S.N., Kuzhinjedathu, K., Srinivasan, H., Huang, C., Pu, D.: Signature verification using a bayesian approach. In: Srihari, S.N., Franke, K. (eds.) IWCF 2008. LNCS, vol. 5158, pp. 192–203. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Horn, B.: Robot vision. MIT Press (1986)

    Google Scholar 

  6. Munich, M.E., Perona, P.: Visual identification by signature tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(2), 200–217 (2003)

    Article  Google Scholar 

  7. Fang, C.H.L., Tang, Y.Y., Tse, K.W., Kwok, P.C.K., Wong, Y.K.: Off-line signature verification by the tracking of feature and stroke positions. Pattern Recognition 36, 91–101 (2003)

    Article  MATH  Google Scholar 

  8. Lee, S., Pan, J.C.: Off-line tracing and representation of signatures. IEEE Transactions on Systems, Man and Cybernetics 22, 755–771 (1992)

    Article  MATH  Google Scholar 

  9. Lin, C.C., Chellappa, R.: Classification of partial 2-d shapes using fourier descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 686–690 (1987)

    Article  Google Scholar 

  10. Ammar, M., Yoshido, Y., Fukumura, T.: A new effective approach for off-line verification of signatures by using pressure features. In: Proceedings of the 8th International Conference on Pattern Recognition, pp. 566–569 (1986)

    Google Scholar 

  11. Guo, J.K., Doermann, D., Rosenfeld, A.: Local correspondence for detecting random forgeries. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 319–323 (1997)

    Google Scholar 

  12. Kalera, M.K., Srihari, S., Xu, A.: Off-line signature verification and identification using distance statistics. International Journal of Pattern Recognition and Artificial Intelligence, 228–232 (2003)

    Google Scholar 

  13. Srikantan, G., Lam, S., Srihari, S.: Gradient-based contour encoding for character recognition. Pattern Recognition 7, 1147–1160 (1996)

    Article  Google Scholar 

  14. Zhang, B., Srihari, S.N.: Analysis of handwriting individuality using handwritten words. In: Proceedings of the Seventh International Conference on Document Analysis and Recognition. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  15. Srihari, S.N., Cha, S., Arora, H., Lee, S.: Individuality of handwriting. Journal of Forensic Sciences 47(4), 858–872 (2002)

    Article  Google Scholar 

  16. Zhang, B., Srihari, S.N.: Binary vector dissimilarity measures for handwriting identification. In: Proceedings of SPIE, Document Recognition and Retrieval, pp. 155–166 (2003)

    Google Scholar 

  17. Blankers, V., van den Heuvel, C., Franke, K., Vuurpijl, L.: The icdar 2009 signature verification competition. In: Tenth International Conference on Document Analysis and Recognition (ICDAR 2009) (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pu, D., Ball, G.R., Srihari, S.N. (2009). A Machine Learning Approach to Off-Line Signature Verification Using Bayesian Inference. In: Geradts, Z.J.M.H., Franke, K.Y., Veenman, C.J. (eds) Computational Forensics. IWCF 2009. Lecture Notes in Computer Science, vol 5718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03521-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03521-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03520-3

  • Online ISBN: 978-3-642-03521-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics