Abstract
Picture language recognizability by 2-monoids is shown to be equivalent to recognizability by frame action. Then we establish a bijection between the pseudovarieties of finite 2-monoids and varieties of frame recognizable picture languages.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bozapalidis, S., Grammatikopoulou, A.: Picture Codes. RAIRO: Theoretical Informatics and Applications 40, 537–550 (2006)
Bozapalidis, S., Grammatikopoulou, A.: Recognizable Picture Series. Journal of Automata, Languages and Combinatorics 10(2/3), 159–183 (2005)
Bozapalidis, S.: Picture Deformation. Acta Informatica 45, 1–31 (2008)
Eilenberg, S.: Automata, Languages and Machines, vol. B. Academic Press, New York (1977)
Matz, O.: Regular Expressions and Context-free Grammars for Picture Languages. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 283–294. Springer, Heidelberg (1997)
Salehi, S., Steinby, M.: Varieties of many-sorted recognizable sets. PU.M.A 18, 319–343 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bozapalidis, S., Grammatikopoulou, A. (2009). An Eilenberg Theorem for Pictures. In: Bozapalidis, S., Rahonis, G. (eds) Algebraic Informatics. CAI 2009. Lecture Notes in Computer Science, vol 5725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03564-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-03564-7_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03563-0
Online ISBN: 978-3-642-03564-7
eBook Packages: Computer ScienceComputer Science (R0)