Skip to main content

On the Reversibility of Parallel Insertion, and Its Relation to Comma Codes

  • Conference paper
Algebraic Informatics (CAI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5725))

Included in the following conference series:

  • 426 Accesses

Abstract

This paper studies conditions under which the operation of parallel insertion can be reversed by parallel deletion, i.e., when does the equality \((L_1 \Leftarrow L_2) \Rightarrow L_2 = L_1\) hold for languages L 1 and L 2. We obtain a complete characterization of the solutions in the special case when both languages involved are singleton words. We also define comma codes, a family of codes with the property that, if L 2 is a comma code, then the above equation holds for any language \(L_1 \subseteq {\it \Sigma}^*\). Lastly, we generalize the notion of comma codes to that of comma intercodes of index m. Besides several properties, we prove that the families of comma intercodes of index m form an infinite proper inclusion hierarchy, the first element which is a subset of the family of infix codes, and the last element of which is a subset of the family of bifix codes.

This research was supported by Discovery Grant of the Natural Science and Engineering Research Council of Canada, and Canada Research Chair Award to L.K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berstel, J., Perrin, D.: Theory of Codes. Academic Press. Inc., Orlando (1985)

    MATH  Google Scholar 

  2. Domaratzki, M.: Deletion along trajectories. Theoretical Computer Science 320, 293–313 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ito, M., Kari, L., Thierrin, G.: Insertion and deletion closure of languages. Theoretical Computer Science 183, 3–19 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jürgensen, H., Konstantinidis, S.: The hierarchy of codes. In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710, pp. 50–68. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  5. Kari, L.: On Insertion and Deletion in Formal Languages. Ph.D. Thesis, University of Turku (1991)

    Google Scholar 

  6. Kari, L.: Insertion and deletion of words: determinism and reversibility. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629, pp. 315–326. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  7. Kari, L., Thierrin, G.: Words insertions and primitivity. Utilitas Mathematica 53, 49–61 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Kari, L., Mateescu, A., Paun, G., Salomaa, A.: Deletion sets. Fundamenta Informatica 18(1), 355–370 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Kari, L., Mateescu, A., Paun, G., Salomaa, A.: On parallel deletions applied to a word. RAIRO. Theoret. Inform. Appl. 29, 129–144 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kudlek, M., Mateescu, A.: On distributed catenation. Theoretical Computer Science 180, 341–352 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kudlek, M., Mateescu, A.: On mix operation. New Trends in Formal Languages. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 35–44. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  12. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  13. Manea, F., Mitrana, V., Yokomori, T.: Two complementary operations inspired by the DNA hairpin formation: Completion and reduction. Theoretical Computer Science 410, 417–425 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories: syntactic constraints. Theoretical Computer Science 197, 1–56 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Parikh, R.J.: On context-free languages. Journal of the Association for Computing Machinery 13, 570–581 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shyr, H.J.: Free Monoids and Languages. Lecture Notes, Institute of Applied Mathematics, National Chung-Hsing University, Taichung, Taiwan (2001)

    Google Scholar 

  17. Yu, S.S.: Languages and Codes. Lecture Notes, Department of Computer Science, National Chung-Hsing University, Taichung, Taiwan 402 (2005)

    Google Scholar 

  18. Yu, S.S.: A characterization of intercodes. Intern. J. Computer Math. 36, 39–48 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cui, B., Kari, L., Seki, S. (2009). On the Reversibility of Parallel Insertion, and Its Relation to Comma Codes. In: Bozapalidis, S., Rahonis, G. (eds) Algebraic Informatics. CAI 2009. Lecture Notes in Computer Science, vol 5725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03564-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03564-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03563-0

  • Online ISBN: 978-3-642-03564-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics