Skip to main content

Syntax-Directed Translations and Quasi-alphabetic Tree Bimorphisms — Revisited

  • Conference paper
Algebraic Informatics (CAI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5725))

Included in the following conference series:

  • 417 Accesses

Abstract

Quasi-alphabetic tree bimorphisms [Steinby, Tîrnă ucă: Defining syntax-directed translations by tree bimorphisms. Theor. Comput. Sci., to appear. http://dx.doi.org/10.1016/j.tcs.2009.03.009 , 2009] are reconsidered. It is known that the class of (string) translations defined by such bimorphisms coincides with the class of syntax-directed translations. This result is extended to a smaller class of tree bimorphisms namely (linear and complete) symbol-to-symbol tree bimorphisms. Moreover, it is shown that the class of simple syntax-directed translations coincides with the class of translations defined by alphabetic tree bimorphisms (also known as finite-state relabelings). This proves that alphabetic tree bimorphisms are not sufficiently powerful to model all syntax-directed translations. Finally, it is shown that the class of tree transformations defined by quasi-alphabetic tree bimorphisms is closed under composition. The corresponding result is known in the variable-free case. Overall, the main results of [Steinby, Tîrnă ucă] are strengthened.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 1–24. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Knight, K.: Capturing practical natural language transformations. Machine Translation 21(2), 121–133 (2007)

    Article  Google Scholar 

  3. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)

    Google Scholar 

  4. Nivat, M., Podelski, A. (eds.): Tree Automata and Languages. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  5. Engelfriet, J.: Bottom-up and top-down tree transformations: A comparison. Math. Syst. Theory 9(3), 198–231 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theor. Comput. Sci. 20(1), 33–93 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bozapalidis, S.: Alphabetic tree relations. Theor. Comput. Sci. 99(2), 177–211 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Takahashi, M.: Primitive transformations of regular sets and recognizable sets. In: Proc. ICALP, pp. 475–480. North-Holland, Amsterdam (1972)

    Google Scholar 

  9. Steinby, M.: On certain algebraically defined tree transformations. In: Proc. Algebra, Combinatorics and Logic in Computer Science. Colloquia Mathematica Societatis János Bolyai, vol. 42, pp. 745–764. North-Holland, Amsterdam (1986)

    Google Scholar 

  10. Irons, E.T.: A syntax directed compiler for ALGOL 60. Comm. ACM 4(1), 51–55 (1961)

    Article  MATH  Google Scholar 

  11. Shieber, S.M., Schabes, Y.: Synchronous tree-adjoining grammars. In: Proc. COLING, pp. 253–258. ACL (1990)

    Google Scholar 

  12. Satta, G., Peserico, E.: Some computational complexity results for synchronous context-free grammars. In: Proc. HLT/EMNLP, pp. 803–810. ACL (2005)

    Google Scholar 

  13. Shieber, S.M.: Synchronous grammars as tree transducers. In: Proc. TAG+7, pp. 88–95 (2004)

    Google Scholar 

  14. Aho, A.V., Ullman, J.D.: Parsing. The Theory of Parsing, Translation, and Compiling, vol. 1. Prentice-Hall, Englewood Cliffs (1972)

    MATH  Google Scholar 

  15. Steinby, M., Tîrnăucă, C.I.: Defining syntax-directed translations by tree bimorphisms. Theor. Comput. Sci. (to appear, 2009), http://dx.doi.org/10.1016/j.tcs.2009.03.009

  16. Aho, A.V., Ullman, J.D.: Properties of syntax directed translations. J. Comput. Syst. Sci. 3(3), 319–334 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  17. Aho, A.V., Ullman, J.D.: Syntax directed translations and the pushdown assembler. J. Comput. Syst. Sci. 3(1), 37–56 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  18. Comon-Lundh, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C., Tison, S., Tommasi, M.: Tree automata—techniques and applications (2007), http://tata.gforge.inria.fr/

  19. Thatcher, J.W.: Tree automata: An informal survey. In: Currents in the Theory of Computing, pp. 143–172. Prentice-Hall, Englewood Cliffs (1973)

    Google Scholar 

  20. Maletti, A.: Compositions of extended top-down tree transducers. Inf. Comput. 206(9-10), 1187–1196 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maletti, A., Tîrnăucă, C.I.: Properties of quasi-alphabetic tree bimorphisms (unpublished 2009), http://arxiv.org/abs/0906.2369v1

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maletti, A., Tîrnăucă, C.I. (2009). Syntax-Directed Translations and Quasi-alphabetic Tree Bimorphisms — Revisited. In: Bozapalidis, S., Rahonis, G. (eds) Algebraic Informatics. CAI 2009. Lecture Notes in Computer Science, vol 5725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03564-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03564-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03563-0

  • Online ISBN: 978-3-642-03564-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics