Abstract
Quasi-alphabetic tree bimorphisms [Steinby, Tîrnă ucă: Defining syntax-directed translations by tree bimorphisms. Theor. Comput. Sci., to appear. http://dx.doi.org/10.1016/j.tcs.2009.03.009 , 2009] are reconsidered. It is known that the class of (string) translations defined by such bimorphisms coincides with the class of syntax-directed translations. This result is extended to a smaller class of tree bimorphisms namely (linear and complete) symbol-to-symbol tree bimorphisms. Moreover, it is shown that the class of simple syntax-directed translations coincides with the class of translations defined by alphabetic tree bimorphisms (also known as finite-state relabelings). This proves that alphabetic tree bimorphisms are not sufficiently powerful to model all syntax-directed translations. Finally, it is shown that the class of tree transformations defined by quasi-alphabetic tree bimorphisms is closed under composition. The corresponding result is known in the variable-free case. Overall, the main results of [Steinby, Tîrnă ucă] are strengthened.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 1–24. Springer, Heidelberg (2005)
Knight, K.: Capturing practical natural language transformations. Machine Translation 21(2), 121–133 (2007)
Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
Nivat, M., Podelski, A. (eds.): Tree Automata and Languages. North-Holland, Amsterdam (1992)
Engelfriet, J.: Bottom-up and top-down tree transformations: A comparison. Math. Syst. Theory 9(3), 198–231 (1975)
Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theor. Comput. Sci. 20(1), 33–93 (1982)
Bozapalidis, S.: Alphabetic tree relations. Theor. Comput. Sci. 99(2), 177–211 (1992)
Takahashi, M.: Primitive transformations of regular sets and recognizable sets. In: Proc. ICALP, pp. 475–480. North-Holland, Amsterdam (1972)
Steinby, M.: On certain algebraically defined tree transformations. In: Proc. Algebra, Combinatorics and Logic in Computer Science. Colloquia Mathematica Societatis János Bolyai, vol. 42, pp. 745–764. North-Holland, Amsterdam (1986)
Irons, E.T.: A syntax directed compiler for ALGOL 60. Comm. ACM 4(1), 51–55 (1961)
Shieber, S.M., Schabes, Y.: Synchronous tree-adjoining grammars. In: Proc. COLING, pp. 253–258. ACL (1990)
Satta, G., Peserico, E.: Some computational complexity results for synchronous context-free grammars. In: Proc. HLT/EMNLP, pp. 803–810. ACL (2005)
Shieber, S.M.: Synchronous grammars as tree transducers. In: Proc. TAG+7, pp. 88–95 (2004)
Aho, A.V., Ullman, J.D.: Parsing. The Theory of Parsing, Translation, and Compiling, vol. 1. Prentice-Hall, Englewood Cliffs (1972)
Steinby, M., Tîrnăucă, C.I.: Defining syntax-directed translations by tree bimorphisms. Theor. Comput. Sci. (to appear, 2009), http://dx.doi.org/10.1016/j.tcs.2009.03.009
Aho, A.V., Ullman, J.D.: Properties of syntax directed translations. J. Comput. Syst. Sci. 3(3), 319–334 (1969)
Aho, A.V., Ullman, J.D.: Syntax directed translations and the pushdown assembler. J. Comput. Syst. Sci. 3(1), 37–56 (1969)
Comon-Lundh, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C., Tison, S., Tommasi, M.: Tree automata—techniques and applications (2007), http://tata.gforge.inria.fr/
Thatcher, J.W.: Tree automata: An informal survey. In: Currents in the Theory of Computing, pp. 143–172. Prentice-Hall, Englewood Cliffs (1973)
Maletti, A.: Compositions of extended top-down tree transducers. Inf. Comput. 206(9-10), 1187–1196 (2008)
Maletti, A., Tîrnăucă, C.I.: Properties of quasi-alphabetic tree bimorphisms (unpublished 2009), http://arxiv.org/abs/0906.2369v1
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maletti, A., Tîrnăucă, C.I. (2009). Syntax-Directed Translations and Quasi-alphabetic Tree Bimorphisms — Revisited. In: Bozapalidis, S., Rahonis, G. (eds) Algebraic Informatics. CAI 2009. Lecture Notes in Computer Science, vol 5725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03564-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-03564-7_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03563-0
Online ISBN: 978-3-642-03564-7
eBook Packages: Computer ScienceComputer Science (R0)