Skip to main content

Polynomial Interpolation of the k-th Root of the Discrete Logarithm

  • Conference paper
Algebraic Informatics (CAI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5725))

Included in the following conference series:

Abstract

In the present study the problem of efficient computation of the k-th root of the Discrete Logarithm is investigated. Lower bounds on the degree of interpolation polynomials of the root of the Discrete Logarithm for subsets of given data are obtained. These results support the assumption of hardness of the k-th root of the discrete logarithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ateniese, G., Tsudik, G.: Some open issues and new directions in group signatures. In: Franklin, M. (ed.) FCT 1999. LNCS, vol. 1684, pp. 196–211. Springer, Heidelberg (1999)

    Google Scholar 

  2. Adelmann, C., Winterhof, A.: Interpolation of functions related to the integer factoring problem. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 144–154. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Aly, H., Winterhof, A.: Polynomial representations of the Lucas logarithm. Finite Fields Appl. 12(3), 413–424 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bresson, E., Stern, J.: Efficient Revocation in Group Signatures. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Bussard, L., Molva, R., Roudier, Y.: History-based signature or how to trust anonymous documents. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, pp. 78–92. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Camenisch, J.L.: Group Signature Schemes and Payment Systems Based on the Discrete Logarithm Problem, Doctoral Dissertation, ZURICH (1998)

    Google Scholar 

  7. Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  8. Coppersmith, D., Shparlinski, I.: On polynomial approximation of the discrete logarithm and the Diffie-Hellman mapping. J. Cryptology 13(3), 339–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. El Mahassni, E., Shparlinski, I.E.: Polynomial representations of the Diffie-Hellman mapping. Bull. Austral. Math. Soc. 63, 467–473 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jeong, I.R., Lee, D.-H.: Anonymity control in multi-bank E-cash system. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 104–116. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Konoma, C., Mambo, M., Shizuya, H.: The computational difficulty of solving cryptographic primitive problems related to the discrete logarithm problem. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E88-A(1), 81–88 (2005)

    Article  Google Scholar 

  12. Lysyanskaya, A., Ramzan, Z.: Group blind digital signatures: A scalable solution to electronic cash. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 184–197. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Meidl, W., Winterhof, A.: A polynomial representation of the Diffie-Hellman mapping. Appl. Algebra Engrg. Comm. Comput. 13, 313–318 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Meletiou, G.C.: Explicit form for the discrete logarithm over the field GF(p, k). Arch. Math (Brno) 29, 25–28 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Meletiou, G.C., Mullen, G.L.: A note on discrete logarithms in finite fields. Appl. Algebra Engrg. Comm. Comput. 3(1), 75–78 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meletiou, G.C., Winterhof, A.: Interpolation of the double discrete logarithm. In: von zur Gathen, J., Imaña, J.L., Koç, Ç.K. (eds.) WAIFI 2008. LNCS, vol. 5130, pp. 1–10. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Mullen, G.L., White, D.: A polynomial representation for logarithms in GF(q). Acta Arith. 47(3), 255–261 (1986)

    MathSciNet  MATH  Google Scholar 

  18. Niederreiter, H.: A short proof for explicit formulas for discrete logarithms in finite fields. Appl. Algebra Engrg. Comm. Comput. 1(1), 55–57 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Niederreiter, H., Winterhof, A.: Incomplete character sums and polynomial interpolation of the discrete logarithm. Finite Fields Appl. 8(2), 184–192 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pavlovski, C., Boyd, C.: Attacks based on small factors in various group structures. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 36–50. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Shparlinski, I.E.: Cryptographic Applications of Analytic Number Theory. Complexity Lower Bounds and Pseudorandomness. Progress in Computer Science and Applied Logic, vol. 22. Birkhauser Verlag, Basel (2003)

    Google Scholar 

  22. Stadler, M.A.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  23. Traoré, J.: Group signatures and their relevance to privacy protecting offline electronic cash systems. In: Pieprzyk, J.P., Safavi-Naini, R., Seberry, J. (eds.) ACISP 1999. LNCS, vol. 1587, pp. 228–243. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  24. Winterhof, A.: A note on the interpolation of the Diffie-Hellman mapping. Bull. Austral. Math. Soc. 64, 475–477 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Winterhof, A.: Polynomial interpolation of the discrete logarithm. Des. Codes Cryptogr. 25, 63–72 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meletiou, G.C. (2009). Polynomial Interpolation of the k-th Root of the Discrete Logarithm. In: Bozapalidis, S., Rahonis, G. (eds) Algebraic Informatics. CAI 2009. Lecture Notes in Computer Science, vol 5725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03564-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03564-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03563-0

  • Online ISBN: 978-3-642-03564-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics