Abstract
For automatic structures, several logics have been shown decidable: first-order logic, its extension by the infinity quantifier, by modulo-counting quantifiers, and even by a restricted form of second-order quantification. We review these decidability proofs. As a new result, we determine the data, the expression, and the combined complexity of quantifier-classes for first-order logic. Finally, we also recall that first-order logic becomes elementary decidable for automatic structures of bounded degree.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bárány, V.: Invariants of automatic presentations and semi-synchronous transductions. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 289–300. Springer, Heidelberg (2006)
Bárány, V., Kaiser, Ł., Rubin, S.: Cardinality and counting quantifiers on omega-automatic structures. In: STACS 2008, pp. 385–396. IFIB Schloss Dagstuhl (2008)
Blumensath, A.: Automatic structures. Technical report, RWTH Aachen (1999)
Blumensath, A., Grädel, E.: Automatic Structures. In: LICS 2000, pp. 51–62. IEEE Computer Society Press, Los Alamitos (2000)
Campbell, C.M., Robertson, E.F., Ruškuc, N., Thomas, R.M.: Automatic semigroups. Theoretical Computer Science 250, 365–391 (2001)
Compton, K.J., Henson, C.W.: A uniform method for proving lower bounds on the computational complexity of logical theories. Annals of Pure and Applied Logic 48, 1–79 (1990)
Corran, R., Hoffmann, M., Kuske, D., Thomas, R.M.: Singular Artin monoids of finite type are automatic (submitted)
Delhommé, Ch., Goranko, V., Knapik, T.: Automatic linear orderings (Manuscript 2003)
Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Am. Math. Soc. 98, 21–51 (1961)
Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word Processin. Groups. Jones and Bartlett Publishers, Boston (1992)
Fohry, E., Kuske, D.: On graph products of automatic and biautomatic monoids. Semigroup forum 72, 337–352 (2006)
Gaifman, H.: On local and nonlocal properties. In: Stern, J. (ed.) Logic Colloquium 1981, pp. 105–135. North-Holland, Amsterdam (1982)
Hodgson, B.R.: On direct products of automaton decidable theories. Theoretical Computer Science 19, 331–335 (1982)
Keisler, H.J., Lotfallah, W.B.: A local normal form theorem for infinitary logic with unary quantifiers. Mathematical Logic Quarterly 51(2), 137–144 (2005)
Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)
Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic structures: richness and limitations. Log. Methods in Comput. Sci. 3(2) (2007)
Khoussainov, B., Rubin, S., Stephan, F.: Definability and regularity in automatic structures. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 440–451. Springer, Heidelberg (2004)
Khoussainov, B., Rubin, S., Stephan, F.: Automatic linear orders and trees. ACM Transactions on Computational Logic 6(4), 675–700 (2005)
Kuske, D.: Is Cantor’s theorem automatic? In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 332–345. Springer, Heidelberg (2003)
Kuske, D., Lohrey, M.: First-order and counting theories of ω-automatic structures. Journal of Symbolic Logic 73, 129–150 (2008)
Kuske, D., Lohrey, M.: Automatic structures of bounded degree revisited. In: CSL 1999. LNCS. Springer, Heidelberg (to appear, 2009)
Kuske, D., Lohrey, M.: Some natural problems in automatic graphs. Journal of Symbolic Logic (accepted, 2009)
Lohrey, M.: Automatic structures of bounded degree. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 344–358. Springer, Heidelberg (2003)
Oliver, G.P., Thomas, R.M.: Automatic presentations for finitely generated groups. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 693–704. Springer, Heidelberg (2005)
Rubin, S.: Automata presenting structures: A survey of the finite string case. Bulletin of Symbolic Logic 14, 169–209 (2008)
Sakarovitch, J.: Easy multiplications. I. The realm of Kleene’s Theorem. Information and Computation 74, 173–197 (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kuske, D. (2009). Theories of Automatic Structures and Their Complexity. In: Bozapalidis, S., Rahonis, G. (eds) Algebraic Informatics. CAI 2009. Lecture Notes in Computer Science, vol 5725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03564-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-03564-7_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03563-0
Online ISBN: 978-3-642-03564-7
eBook Packages: Computer ScienceComputer Science (R0)