Skip to main content

Theories of Automatic Structures and Their Complexity

  • Conference paper
Algebraic Informatics (CAI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5725))

Included in the following conference series:

Abstract

For automatic structures, several logics have been shown decidable: first-order logic, its extension by the infinity quantifier, by modulo-counting quantifiers, and even by a restricted form of second-order quantification. We review these decidability proofs. As a new result, we determine the data, the expression, and the combined complexity of quantifier-classes for first-order logic. Finally, we also recall that first-order logic becomes elementary decidable for automatic structures of bounded degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bárány, V.: Invariants of automatic presentations and semi-synchronous transductions. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 289–300. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Bárány, V., Kaiser, Ł., Rubin, S.: Cardinality and counting quantifiers on omega-automatic structures. In: STACS 2008, pp. 385–396. IFIB Schloss Dagstuhl (2008)

    Google Scholar 

  3. Blumensath, A.: Automatic structures. Technical report, RWTH Aachen (1999)

    Google Scholar 

  4. Blumensath, A., Grädel, E.: Automatic Structures. In: LICS 2000, pp. 51–62. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  5. Campbell, C.M., Robertson, E.F., Ruškuc, N., Thomas, R.M.: Automatic semigroups. Theoretical Computer Science 250, 365–391 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Compton, K.J., Henson, C.W.: A uniform method for proving lower bounds on the computational complexity of logical theories. Annals of Pure and Applied Logic 48, 1–79 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Corran, R., Hoffmann, M., Kuske, D., Thomas, R.M.: Singular Artin monoids of finite type are automatic (submitted)

    Google Scholar 

  8. Delhommé, Ch., Goranko, V., Knapik, T.: Automatic linear orderings (Manuscript 2003)

    Google Scholar 

  9. Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Am. Math. Soc. 98, 21–51 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  10. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word Processin. Groups. Jones and Bartlett Publishers, Boston (1992)

    Google Scholar 

  11. Fohry, E., Kuske, D.: On graph products of automatic and biautomatic monoids. Semigroup forum 72, 337–352 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gaifman, H.: On local and nonlocal properties. In: Stern, J. (ed.) Logic Colloquium 1981, pp. 105–135. North-Holland, Amsterdam (1982)

    Google Scholar 

  13. Hodgson, B.R.: On direct products of automaton decidable theories. Theoretical Computer Science 19, 331–335 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keisler, H.J., Lotfallah, W.B.: A local normal form theorem for infinitary logic with unary quantifiers. Mathematical Logic Quarterly 51(2), 137–144 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  16. Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic structures: richness and limitations. Log. Methods in Comput. Sci. 3(2) (2007)

    Google Scholar 

  17. Khoussainov, B., Rubin, S., Stephan, F.: Definability and regularity in automatic structures. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 440–451. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Khoussainov, B., Rubin, S., Stephan, F.: Automatic linear orders and trees. ACM Transactions on Computational Logic 6(4), 675–700 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kuske, D.: Is Cantor’s theorem automatic? In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 332–345. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Kuske, D., Lohrey, M.: First-order and counting theories of ω-automatic structures. Journal of Symbolic Logic 73, 129–150 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuske, D., Lohrey, M.: Automatic structures of bounded degree revisited. In: CSL 1999. LNCS. Springer, Heidelberg (to appear, 2009)

    Google Scholar 

  22. Kuske, D., Lohrey, M.: Some natural problems in automatic graphs. Journal of Symbolic Logic (accepted, 2009)

    Google Scholar 

  23. Lohrey, M.: Automatic structures of bounded degree. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 344–358. Springer, Heidelberg (2003)

    Google Scholar 

  24. Oliver, G.P., Thomas, R.M.: Automatic presentations for finitely generated groups. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 693–704. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Rubin, S.: Automata presenting structures: A survey of the finite string case. Bulletin of Symbolic Logic 14, 169–209 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sakarovitch, J.: Easy multiplications. I. The realm of Kleene’s Theorem. Information and Computation 74, 173–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuske, D. (2009). Theories of Automatic Structures and Their Complexity. In: Bozapalidis, S., Rahonis, G. (eds) Algebraic Informatics. CAI 2009. Lecture Notes in Computer Science, vol 5725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03564-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03564-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03563-0

  • Online ISBN: 978-3-642-03564-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics