Skip to main content

The Graph Programming Language GP

  • Conference paper
Algebraic Informatics (CAI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5725))

Included in the following conference series:

Abstract

GP (for Graph Programs) is a rule-based, nondeterministic programming language for solving graph problems at a high level of abstraction, freeing programmers from handling low-level data structures. The core of GP consists of four constructs: single-step application of a set of conditional graph-transformation rules, sequential composition, branching and iteration. This paper gives an overview on the GP project. We introduce the language by discussing a sequence of small programming case studies, formally explain conditional rule schemata which are the building blocks of programs, and present a semantics for GP in the style of structural operational semantics. A special feature of the semantics is how it uses the notion of finitely failing programs to define powerful branching and iteration commands. We also describe GP’s prototype implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aït-Kaci, H.: Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press, Cambridge (1991)

    Google Scholar 

  2. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  3. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press (1978)

    Google Scholar 

  4. Duffin, R.J.: Topology of series-parallel networks. Journal of Mathematical Analysis and Applications 10, 303–318 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ehrig, H., Habel, A.: Graph grammars with application conditions. In: Rozenberg, G., Salomaa, A. (eds.) The Book of L, pp. 87–100. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  6. Ermel, C., Rudolf, M., Taentzer, G.: The AGG approach: Language and environment. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation, vol. 2, ch. 14, pp. 551–603. World Scientific, Singapore (1999)

    Chapter  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  8. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: A fast SPO-based graph rewriting tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Habel, A., Plump, D.: Computational completeness of programming languages based on graph transformation. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 230–245. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Habel, A., Plump, D.: Relabelling in graph transformation. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 135–147. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Heer, J., Card, S.K., Landay, J.A.: Prefuse: A toolkit for interactive information visualization. In: Proc. SIGCHI Conference on Human Factors in Computing Systems (CHI 2005), pp. 421–430. ACM Press, New York (2005)

    Chapter  Google Scholar 

  12. Kleinberg, J., Tardos, É.: Algorithm Design. Addison Wesley, Reading (2006)

    Google Scholar 

  13. Manning, G., Plump, D.: The GP programming system. In: Proc. Graph Transformation and Visual Modelling Techniques (GT-VMT 2008). Electronic Communications of the EASST, vol. 10 (2008)

    Google Scholar 

  14. Manning, G., Plump, D.: The York abstract machine. In: Proc. Graph Transformation and Visual Modelling Techniques (GT-VMT 2006). Electronic Notes in Theoretical Computer Science, vol. 211, pp. 231–240. Elsevier, Amsterdam (2008)

    Google Scholar 

  15. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In: Proc. International Conference on Software Engineering (ICSE 2000), pp. 742–745. ACM Press, New York (2000)

    Google Scholar 

  16. Nielson, H.R., Nielson, F.: Semantics with Applications: An Appetizer. Springer, Heidelberg (2007)

    Book  MATH  Google Scholar 

  17. Peitgen, H.-O., Jürgens, H., Saupe, D.: Chaos and Fractals, 2nd edn. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  18. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Algebraic Programming 60–61, 17–139 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Plump, D., Steinert, S.: Towards graph programs for graph algorithms. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 128–143. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Plump, D., Steinert, S.: The semantics of graph programs (submitted for publication, 2009)

    Google Scholar 

  21. Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Reynolds, J.C.: Theories of Programming Languages. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  23. Schürr, A.: Operationales Spezifizieren mit programmierten Graphersetzungssystemen. Deutscher Universitäts-Verlag (1991) (in German)

    Google Scholar 

  24. Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: Language and environment. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation, vol. 2, ch. 13, pp. 487–550. World Scientific, Singapore (1999)

    Chapter  Google Scholar 

  25. Steinert, S.: The Graph Programming Language GP. PhD thesis, The University of York (2007)

    Google Scholar 

  26. Taentzer, G., et al.: Generation of Sierpinski triangles: A case study for graph transformation tools. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 514–539. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Winter, A.J., Kullbach, B., Riediger, V.: An overview of the GXL graph exchange language. In: Diehl, S. (ed.) Dagstuhl Seminar 2001. LNCS, vol. 2269, pp. 324–336. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  28. Zündorf, A.: Graph pattern matching in PROGRES. In: Cuny, J., Engels, G., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 454–468. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Plump, D. (2009). The Graph Programming Language GP. In: Bozapalidis, S., Rahonis, G. (eds) Algebraic Informatics. CAI 2009. Lecture Notes in Computer Science, vol 5725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03564-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03564-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03563-0

  • Online ISBN: 978-3-642-03564-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics