Abstract
Let K be a number field and L a finite extension of K of degree ℓ. Let ω 1 = 1,ω 2,..., ω ℓ be K-linearly independent integers of L and k an integer of K. We denote by N L/K the norm from L to K. In this paper we give an algorithm for the computation of algebraic integers, x 1,..., x ℓ ∈ K satisfying the equation N L/K (ω 1 x 1 + ⋯ + x ℓ ω ℓ) = k.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abel, C.S.: Ein Algorithmus zur Berechnung der Klassenzahl und des Regulators reell quadratischer Ordnungen. Ph.D. Thesis, Universität des Saarlandes, Saarbrücken, Germany (1994)
Arvind, V., Kurur, P.P.: On the complexity of computing units in a number field. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 72–86. Springer, Heidelberg (2004)
Assmann, B., Eick, B.: Computing polycyclic presentations for polycyclic rational matrix groups. J. Symbolic Comput. 40(6), 1269–1284 (2005)
Barbeau, E.J.: Pell’s Equation. Springer, Heidelberg (2003)
Bertrand, D.: Dyality on tori and dependence relations. J. Austral. Math. Soc (Series A) 62, 198–216 (1997)
Buchmann, J.: On the Computation of Units and Class Numbers by a Generalization of Langrange’s Algorithm. J. Number Theory 26, 8–30 (1987)
Buchmann, J., Williams, H.C.: On the Infrastructure of the Principal Ideal Class of an Algebraic Number Field of Unit Rank One. Mathematics of Computation 50(182), 569–579 (1988)
Chen, C.-Y., Chang, C.-C., Yang, W.-P.: Fast RSA-type Schemes Based on Pell Equations over \({\mathbb Z}_N\). In: Joint Conference of, International Computer Symposium, Kaohsiung, Taiwan, R.O.C, December 19-21 (1996)
Cohen, H., Frey, G.: Handbook of Elliptic and Hyperelliptic Cryptography. Chapman and Hall/CRC (2006)
Dirichlet, Recherches sur les formes quadratiques à coefficients et à indeterminées complexes, J. Reine Angew. Math. 24, 291-371 = Werke I, 535–618 (1842)
Fjellstedt, L.: On a class of Diophantine equations of the second degree in imaginary quadratic fields. Arkiv. Mat. 2, 435–461 (1952-1954)
de Haan, R., Jacobson Jr., M.J., Williams, H.C.: A fast, rigorous technique for computing the regulator of a real quadratic field. Math. Comp. 76(260), 2139–2160 (2007)
Hallgren, S.: Polynomial-Time Quantum Algorithms for Pell’s Equation and the Principal Ideal Problem. Journal of ACM 54(1), Art. 4, 19 (2007) (electronic)
Huber, K.: On the Period Length of Generalized Inverse Pseudorandom Generators. AAECC 5, 255–260 (1994)
Lenstra Jr., H.W.: Solving the Pell equation. Notices Amer. Math. Soc. 49, 182–192 (2002)
Matthews, K.: The Diophantine Equation x 2 − Dy 2 = N, D > 0. Expos. Math. 18, 323–331 (2000)
Mollin, R.A.: Fundamental Number Theory with Applications. CRC Press, Boca Raton (1998)
Mollin, R.A.: Simple Continued Fraction Solutions for Diophantine Equations. Expos. Math. 19, 55–73 (2001)
Murthy, N.R., Swamy, M.N.S.: Cryptographic Applications of Brahmagupta-Bhãskara Equation. IEEE Transactions on Circuits and Systems 53(7), 1565–1571 (2006)
Niven, I.: Quadratic Diophantine Equations in the Rational and Quadratic Fields. Tras. of Amer. Math. Soc. 52(1), 1–11 (1942)
Niven, I.: The Pell equation in quadratic fields. Bull. Amer. Math. Soc. 49, 413–416 (1943)
Pohst, M.: Computational Algebraic Number Theory. DMV Seminar Band 21. Birkhauser Verlag, Basel (1993)
Schmid, W.A.: On the set of integral solutions of the Pell equation in number fields. Aequationes Math 71, 109–114 (2006)
Shastri, P.: Integral points on the unit circle. J. Number Theory 91(1), 67–70 (2001)
Shastri, P.: Integral points on the circle \(X\sp 2+Y\sp 2=c\). Currents trends in number theory (Allahabad, 2000), 175–184. Hindustan Book Agency, New Delhi (2002)
Skolem, T.: A theorem on the equation ζ 2 − δη 2 = 1, where δ, ζ, η are integers in an imaginary quadratic field. Avh. Norske Akad. Oslo 1, 1–13 (1945)
Skolem, T.: A remark on the equation ζ 2 − δη 2 = 1, δ > 0, δ′,δ, ⋯ < 0 where δ,ζ, η belong to a total real number field. Avh. Norske Vid. Akad. Oslo. I(12), 15 (1945)
Val´fiš, A.Z.: Elementary solution of Pell’s equation (Russian). Akad. Nauk Gruzin. SSR. Trudy Mat. Inst. Razmadze 18, 116–132 (1951)
Vollmer, U.: Asymptotically fast discrete logarithms in quadratic number fields. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 581–594. Springer, Heidelberg (2000)
Williams, H.C.: Solving the Pell Equation, Number theory for the millennium, III, Urbana, IL, A K Peters, Natick, MA, pp. 397–435 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alvanos, P., Poulakis, D. (2009). Solving Norm Form Equations over Number Fields. In: Bozapalidis, S., Rahonis, G. (eds) Algebraic Informatics. CAI 2009. Lecture Notes in Computer Science, vol 5725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03564-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-03564-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03563-0
Online ISBN: 978-3-642-03564-7
eBook Packages: Computer ScienceComputer Science (R0)