Skip to main content

A Note on Unambiguity, Finite Ambiguity and Complementation in Recognizable Two-Dimensional Languages

  • Conference paper
Algebraic Informatics (CAI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5725))

Included in the following conference series:

Abstract

The paper deals with some open questions related to unambiguity, finite ambiguity and complementation of two-dimensional recognizable languages. We give partial answers based on the introduction of special classes of languages of “high complexity”, in a sense specified in the paper and motivated by some necessary conditions holding for recognizable and unambiguous languages. In the last part of the paper we also show a new necessary condition for recognizable two-dimensional languages on unary alphabet.

This work was partially supported by MIUR Project “Automi e Linguaggi Formali: aspetti matematici e applicativi” (2005), by ESF Project “AutoMathA” (2005-2010), by 60 % Projects of University of Catania and Salerno (2007, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anselmo, M., Giammarresi, D., Madonia, M.: New Operators and Regular Expressions for two-dimensional languages over one-letter alphabet. Theoretical Computer Science 340(2), 408–431 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anselmo, M., Giammarresi, D., Madonia, M.: From determinism to non-determinism in recognizable two-dimensional languages. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 36–47. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Anselmo, M., Giammarresi, D., Madonia, M., Restivo, A.: Unambiguous Recognizable Two-dimensional Languages. RAIRO: Theoretical Informatics and Applications 40(2), 227–294 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Anselmo, M., Jonoska, N., Madonia, M.: Framed Versus Unframed Two-dimensional Languages. In: Nielsen, M., Kucera, A., Miltersen, P.B., Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 79–92. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Anselmo, M., Madonia, M.: Deterministic two-dimensional languages over one-letter alphabet. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 147–159. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Anselmo, M., Madonia, M.: Deterministic and unambiguous two-dimensional languages over one-letter alphabet. Theoretical Computer Science 410, 1477–1485 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertoni, A., Goldwurm, M., Lonati, V.: On the complexity of unary tiling-recognizable picture languages. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 381–392. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Cervelle, J.: Langages de figures. Rapport de stage, ENS de Lyon (1997)

    Google Scholar 

  9. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47, 149–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, London (1974)

    MATH  Google Scholar 

  11. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. Journal Pattern Recognition and Artificial Intelligence 6(2&3), 241–256 (1992)

    Article  MATH  Google Scholar 

  12. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., et al. (eds.) Handbook of Formal Languages, vol. III, pp. 215–268. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  13. Giammarresi, D., Restivo, A.: Matrix based complexity functions and recognizable picture languages. In: Grader, E., Flum, J., Wilke, T. (eds.) Logic and Automata: History and Perspectives. Texts in Logic and Games 2, pp. 315–337. Amsterdam University Press (2007)

    Google Scholar 

  14. Giammarresi, D., Restivo, A.: Ambiguity and complementation in recognizable two-dimensional languages. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) Procs. Intern. Conf. on Theoret. Compu. Sci. IFIP, vol. 273, pp. 5–20. Springer, Boston (2008)

    Google Scholar 

  15. Hromkovic, J., Karumäki, J., Klauck, H., Schnitger, G., Seibert, S.: Communication Complexity Method for Measuring Nondeterminism in Finite Automata. Information and Computation 172, 202–217 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal nfa’s over a unary alphabet. Intern. J. Found. Comput. Sci. 2, 163–182 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lindgren, K., Moore, C., Nordahl, M.: Complexity of two-dimensional patterns. Journal of Statistical Physics 91(5-6), 909–951 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Matz, O.: On piecewise testable, starfree, and recognizable picture languages. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, p. 203. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  19. Matz, O.: Dot-depth and monadic quantifier alternation over pictures. Ph.D. thesis Technical Report 99-08, RWTH Aachen (1999)

    Google Scholar 

  20. Matz, O.: Dot-depth, monadic quantifier alternation, and first-order closure over grids and pictures. Theoretical Computer Science 270(1-2), 1–70 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mäurer, I.: Characterizations of Recognizable Picture Series, Ph.D Thesis Universität Leipzig, Institut für Informatik, Abteilung Automaten und Sprachen (2007)

    Google Scholar 

  22. Potthoff, A., Seibert, S., Thomas, W.: Nondeterminism versus determinism of finite automata over directed acyclic graphs. Bull. Belgian Math. Soc. 1, 285–298 (1994)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anselmo, M., Madonia, M. (2009). A Note on Unambiguity, Finite Ambiguity and Complementation in Recognizable Two-Dimensional Languages. In: Bozapalidis, S., Rahonis, G. (eds) Algebraic Informatics. CAI 2009. Lecture Notes in Computer Science, vol 5725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03564-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03564-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03563-0

  • Online ISBN: 978-3-642-03564-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics