Skip to main content

An Optimization Technique for Multiple Continuous Multiple Joins over Data Streams

  • Conference paper
Database and Expert Systems Applications (DEXA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5690))

Included in the following conference series:

  • 967 Accesses

Abstract

Join queries having heavy cost are necessary to Data Stream Management System in the sensor network. In this paper, we propose an optimization algorithm for multiple continuous join operators over data streams using a heuristic strategy. First, we propose a solution of building the global shared query execution plan. Second, we solve the problems of updating a window size and routing for a join result. Our experimental results show that the proposed protocol can provide better throughputs than previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonnet, P., Gehrke, J., Seshadri, P.: Towards Sensor Database Systems. In: Proc. 2th Int. Conf. on Mobile Data Management, pp. 3–14 (2001)

    Google Scholar 

  2. Schmidt, S., Fiedler, M., Lehner, W.: Source-aware Join Strategies of Sensor Data Streams. In: Proc. 17th Int. Conf. on Scientific and statistical database management, pp. 123–132 (2005)

    Google Scholar 

  3. Wilschut, N., Apers, P.M.G.: Pipelining in query execution. In: Conf. on Database. Parallel Architectures and their Applications, p. 562 (1991)

    Google Scholar 

  4. Urhan, T., Franklin, M.J.: XJoin: A reactively-scheduled pipelined join operator. IEEE Data Engineering Bulletin 23(2), 27–33 (2000)

    Google Scholar 

  5. Viglas, S.D., Naughton, J.F., Burger, J.: Maximizing the Output Rate of Multi-Way Join Queries over Streaming Information Sources. In: VLDB 2003, pp. 285–296 (2003)

    Google Scholar 

  6. Golab, L., Ozau, M.T.: Processing Sliding Window Multi-Joins in Continuous Queries over Data Streams. In: VLDB 2003, pp. 500–511 (2003)

    Google Scholar 

  7. Kang, J., Naughton, J.F., Viglas, S.D.: Evaluating Window Joins over unbounded Streams. In: ICDE 2003, pp. 341–352 (2003)

    Google Scholar 

  8. Ding, L., Rundensteiner, E.A.: Evaluating Window Joins over Punctuated Streams. In: Proc. 13th ACM Int. Conf. on Information and Knowledge Management, pp. 98–107 (2004)

    Google Scholar 

  9. Shim, K., Sellis, T.: Multiple-query optimization. ACM Transactions on Database Systems 13(1), 23–52 (1988)

    Article  Google Scholar 

  10. Chen, J., DeWitt, D.J.: Dynamic Re-grouping of Continuous Queries. In: VLDB 2002, pp. 430–441 (2002)

    Google Scholar 

  11. Ghanem, T.M., Aref, W.G., Elmagarmid, A.K.: Exploiting Predicate-Window Semantics over Data Streams. ACM SIGMOD Record 35(1), 555–568 (2006)

    Article  Google Scholar 

  12. Hammad, M., Franklin, M., Aref, W., Elmagarmid, A.: Scheduling for Shared Window Joins over Data Streams. In: VLDB 2003, pp. 297–308 (2003)

    Google Scholar 

  13. Wang, S., Rundensteiner, E., Ganguly, S., Bhatnagar, S.: State-Slice: New Paradigm of Multi-Query Optimization of Window-Based Stream Queries. In: VLDB 2006, pp. 619–630 (2006)

    Google Scholar 

  14. Krishnamurthy, S., Franklin, M.J., Hellerstein, J.M., Jacobson, G.: The Case for Precision Sharing. In: VLDB 2004, pp. 972–986 (2004)

    Google Scholar 

  15. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. The MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  16. Li, H., Chen, S., Tatemura, J., Agrawal, D., Candan, K.S., Hsiung, W.: Safety Guarantee of Continuous Join Queries over Punctuated Data Streams. In: VLDB 2006, pp. 19–30 (2006)

    Google Scholar 

  17. Agarwal, P., Xie, J., Yang, J., Yu, H.: Scalable Continuous Query Processing by Tracking Hotspots. In: VLDB 2006 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Byun, C., Lee, H., Ryu, Y., Park, S. (2009). An Optimization Technique for Multiple Continuous Multiple Joins over Data Streams. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2009. Lecture Notes in Computer Science, vol 5690. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03573-9_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03573-9_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03572-2

  • Online ISBN: 978-3-642-03573-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics