Abstract
Statistical shape models, and in particular morphable models, have gained widespread use in computer vision, computer graphics and medical imaging. Researchers have started to build models of almost any anatomical structure in the human body. While these models provide a useful prior for many image analysis task, relatively little information about the shape represented by the morphable model is exploited. We propose a method for computing and visualizing the remaining flexibility, when a part of the shape is fixed. Our method, which is based on Probabilistic PCA, not only leads to an approach for reconstructing the full shape from partial information, but also allows us to investigate and visualize the uncertainty of a reconstruction. To show the feasibility of our approach we performed experiments on a statistical model of the human face and the femur bone. The visualization of the remaining flexibility allows for greater insight into the statistical properties of the shape.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: SIGGRAPH 1999: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 187–194. ACM Press, New York (1999)
Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in geodesic active contours. In: CVPR, vol. 1, p. 1316 (2000)
Tsai, A., Yezzi, A., Wells, J.W., Tempany, C., Tucker, D., Fan, A., Grimson, W.E., Willsky, A.: A shape-based approach to the segmentation of medical imagery using level sets. IEEE Transactions on Medical Imaging 22(2), 137–154 (2003)
Cremers, D., Rousson, M., Deriche, R.: A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape. International Journal of Computer Vision 72(2), 195–215 (2007)
Albrecht, T., Lüthi, M., Vetter, T.: A statistical deformation prior for non-rigid image and shape registration. In: IEEE Conference on CVPR, pp. 1–8 (2008)
Wang, Y., Staib, L.: Physical model-based non-rigid registration incorporating statistical shape information. Medical Image Analysis 4(1), 7–20 (2000)
Benameur, S., Mignotte, M., Destrempes, F., De Guise, J.: Three-dimensional biplanar reconstruction of scoliotic rib cage using the estimation of a mixture of probabilistic prior models. IEEE Transactions on Biomedical Engineering 52(10), 1713–1728 (2005)
Lamecker, H., Wenckebach, T., Hege, H.: Atlas-based 3D-shape reconstruction from X-ray images. In: Proceedings of the 18th International Conference on Pattern Recognition (ICPR 2006), vol. 1, pp. 371–374 (2006)
Fleute, M., Lavallee, S.: Nonrigid 3-D/2-D Registration of Images Using Statistical Models. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 138–147. Springer, Heidelberg (1999)
Roweis, S.: EM Algorithms for PCA and SPCA. In: NIPS, pp. 626–632 (1998)
Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society 61, 611–622 (1999)
Blanz, V., Mehl, A., Vetter, T., Seidel, H.P.: A statistical method for robust 3d surface reconstruction from sparse data. In: International Symposium on 3D Data Processing, Visualization and Transmission (2004)
Basso, C., Vetter, T.: Statistically Motivated 3D Faces Reconstruction. In: Proceedings of the 2nd International Conference on Reconstruction of Soft Facial Parts, p. 71 (2005)
Hwang, B., Lee, S.: Reconstructing a Whole Face Image from a Partially Damaged or Occluded Image by Multiple Matching. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 692–701. Springer, Heidelberg (2007)
Jensen, K., Sporring, J.: Reconstructing Teeth with Bite Information. In: Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 102–111. Springer, Heidelberg (2007)
Gong, X., Wang, G.: A Novel Deformation Framework for Face Modeling from a Few Control Points. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS, vol. 5009, pp. 434–441. Springer, Heidelberg (2008)
Machado, A., Gee, J., Campos, M.: Visual data mining for modeling prior distributions in morphometry. IEEE Signal Processing Magazine 21(3), 20–27 (2004)
Albrecht, T., Knothe, R., Vetter, T.: Modeling the Remaining Flexibility of Partially Fixed Statistical Shape Models. In: Workshop on the Mathematical Foundations of Computational Anatomy, MFCA 2008, New York, USA (2008)
Cootes, T., Taylor, C., Cooper, D., Graham, J., et al.: Active shape models-their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)
Audette, M.A., Ferrie, F.P., Peters, T.M.: An algorithmic overview of surface registration techniques for medical imaging. Medical Image Analysis 4, 201–217 (2000)
Bishop, C.: Pattern recognition and machine learning. Springer, Heidelberg (2006)
Schäfer, J., Strimmer, K.: A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics. Statistical Applications in Genetics and Molecular Biology 4(1), 32 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lüthi, M., Albrecht, T., Vetter, T. (2009). Probabilistic Modeling and Visualization of the Flexibility in Morphable Models. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds) Mathematics of Surfaces XIII. Mathematics of Surfaces 2009. Lecture Notes in Computer Science, vol 5654. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03596-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-03596-8_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03595-1
Online ISBN: 978-3-642-03596-8
eBook Packages: Computer ScienceComputer Science (R0)