Abstract
We derive a numerical method to confirm that a subdivision scheme based on quadrilateral meshes is C 1 at the extraordinary points. We base our work on Theorem 5.25 in Peters and Reif’s book “Subdivision Surfaces”, which expresses it as a condition on the derivatives within the characteristic ring around the EV. This note identifies instead a sufficient condition on the control points in the natural configuration from which the conditions of Theorem 5.25 can be established.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dyn, N.: Analysis of convergence and smoothness by the formalism of laurent polynomials. In: Iske, A., Quack, E., Floater, M. (eds.) Tutorials on Multiresolution in Geometric Modelling, pp. 51–68. Springer, Heidelberg (2002)
Reif, U.: A unified approach to subdivision algorithms near extraordinary vertices. CAGD 12(2), 153–174 (1995)
Peters, J., Reif, U.: Subdivision Surfaces, p. 107. Springer, Heidelberg (2008)
Cashman, T.J., Augsdörfer, U.H., Dodgson, N.A., Sabin, M.A.: NURBS with Extraordinary Points: High-degree, Non-uniform, Rational Subdivision Schemes. ACM Transactions on Graphics 28(3) (2009)
Zorin, D.: A method for analysis of c1-continuity of subdivision surfaces. SIAM Journal of Numerical Analysis 37(5), 1677–1708 (2000)
Umlauf, G.: A technique for verifying the smoothness of subdivision schemes. In: Lucian, M., Neamtu, M. (eds.) Geometric Modeling and Computing: Seattle 2003, pp. 513–521. Nashboro Press (2004)
Ginkel, I., Umlauf, G.: Analyzing a generalized loop subdivision scheme. Computing 79, 353–363 (2007)
Ball, A., Storry, D.: Conditions for tangent plane continuity over recursively generated B-spline surfaces. ACM Transactions on Graphics 7(2), 83–108 (1988)
Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design 10(6), 183–188 (1978)
Augsdörfer, U.H., Dodgson, N.A., Sabin, M.A.: Tuning subdivision by minimising gaussian curvature variation near extraordinary vertices. Computer Graphics Forum 25(3), 263–272 (2006)
Goldman, R.N., DeRose, T.D.: Recursive subdivision without the convex hull property. CAGD 3, 247–265 (1987)
Wallner, J., Dyn, N.: Convergence and C 1 analysis of subdivision schemes on manifolds by proximity. CAGD 22(7), 593–622 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Augsdörfer, U.H., Cashman, T.J., Dodgson, N.A., Sabin, M.A. (2009). Numerical Checking of C 1 for Arbitrary Degree Quadrilateral Subdivision Schemes. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds) Mathematics of Surfaces XIII. Mathematics of Surfaces 2009. Lecture Notes in Computer Science, vol 5654. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03596-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-03596-8_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03595-1
Online ISBN: 978-3-642-03596-8
eBook Packages: Computer ScienceComputer Science (R0)