Skip to main content

Enhancing Agent Intelligence through Data Mining: A Power Plant Case Study

  • Conference paper
Agents and Data Mining Interaction (ADMI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5680))

Included in the following conference series:

  • 474 Accesses

Abstract

In this paper, the methodology for an intelligent assistant for power plants is presented. Multiagent systems technology and data mining techniques are combined to enhance the intelligence of the proposed application, mainly in two aspects: increase the reliability of input data (sensor validation and false measurement replacement) and generate new control monitoring rules. Various classification algorithms are compared. The performance of the application, as tested via simulation experiments, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ABB Group, Products & Services, http://www.abb.com/ProductGuide

  2. Metso, http://www.metsoautomation.com

  3. Flynn, D. (ed.): Thermal Power Plant Simulation and Control. IEE, London (2003)

    Google Scholar 

  4. Hadjiski, M., Boshnakov, K., Christova, N., Terziev, A.: Multi Agent Simulation in Inference Evaluation of Steam Boiler Emission. In: 19th European Conference on Modeling and Simulation, pp. 552–557. Riga, Latvia (2005)

    Google Scholar 

  5. Ma, Z., Iman, F., Lu, P., Sears, R., Kong, L., Rokanuzzaman, A.S., McCollor, D.P., Benson, S.A.: A Comprehensive Slagging and Fouling Prediction Tool for Coal-Fired Boilers and its Validation/Application. Fuel Process. Technol. 88, 1035–1043 (2007)

    Article  Google Scholar 

  6. Frank, P.: Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge Based Redundancy- a Survey and Some New Results. Automatica 26, 459–470 (1990)

    Article  MATH  Google Scholar 

  7. Eryurek, E., Upadhyaya, B.R.: Sensor Validation for Power Plants Using Adaptive Backpropagation Neural Network. IEEE Trans. Nucl. Science 37, 1040–1047 (1990)

    Article  Google Scholar 

  8. Ibarguengoytia, P.H., Vadera, S., Sucar, L.E.: A Probabilistic Model for Information and Sensor Validation. The Computer Journal 49(1), 113–126 (2006)

    Article  Google Scholar 

  9. Athanasopoulou, C., Chatziathanasiou, V.: Intelligent System for Identification and Replacement of Faulty Sensor Measurements in Thermal Power Plants (IPPAMAS: Part 1). Expert Systems With Applications 36(5), 8750–8757 (2009)

    Article  Google Scholar 

  10. Shim, J.: Past, Present, and Future of Decision Support Technology. Decision Support Systems 33(2), 111–126 (2002)

    Article  MathSciNet  Google Scholar 

  11. Vahidov, R.: Intermediating User-DSS Interaction with Autonomous Agents. IEEE Trans. on Systems, Man, and Cybernetics 35(6), 964–970 (2005)

    Article  Google Scholar 

  12. Gao, S., Xu, D.: Conceptual Modeling and Development of an Intelligent Agent-Assisted Decision Support System for Anti-money Laundering. Expert Systems with Applications 36, 1493–1504 (2009)

    Article  Google Scholar 

  13. Lucas, C., Zia, M.A., Shirazi, M.R.A., Alishahi, A.: Development of a Multi-agent Information Management System for Iran Power Industry-A Case Study. In: Power Tech 2001 Proceedings, vol. 3. IEEE, Porto (2001)

    Google Scholar 

  14. Pechoucek, M., Marik, V.: Industrial Deployment of Multi-agent Technologies: Review and Selected Case Studies. Auton Agent Multi-Agent Syst. 17, 397–431 (2008)

    Article  Google Scholar 

  15. Athanasopoulou, C., Chatziathanasiou, V.: Prototype For Optimizing Power Plant Operation. In: Mangina, E., Carbo, J., Molina, J. (eds.) Agent-based Ubiquitous Computing. Atlantis Press (2009)

    Google Scholar 

  16. Kopanas, I., Avouris, N.M., Daskalaki, S.: The Role of Domain Knowledge in a Large Scale Data Mining Project. In: Vlahavas, I.P., Spyropoulos, C.D. (eds.) SETN 2002. LNCS (LNAI), vol. 2308, pp. 288–299. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Arranz, A., Cruz, A., Sanz-Bobi, M.A., Ruiz, P., Coutino, J.: DADICC: Intelligent System for Anomaly Detection in a Combined Cycle Gas Turbine Plant. Expert Systems with Applications 34, 2267–2277 (2008)

    Article  Google Scholar 

  18. Mangina, E.: Application of Intelligent Agents in Power Industry: Promises and Complex Issues. In: Marik, V., Muller, J., Pechoucek, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691, pp. 564–574. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Soldatos, J., Pandis, I., Stamatis, K., Polymenakos, L., Crowley, J.: Agent Based Middleware Infrastructure for Autonomous Context-Aware Ubiquitous Computing Services. Computer Communic. 30, 577–591 (2007)

    Article  Google Scholar 

  20. Symeonidis, A., Mitkas, P.A.: Agent Intelligence Through Data Mining. Springer, New York (2005)

    MATH  Google Scholar 

  21. Shreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., Van de Velde, W., Wielinga, B.: Knowledge Engineering and Management: the CommonKADS methodology. MIT Press, Cambridge (2000)

    Google Scholar 

  22. Iglesias, C.A., Garijo, M.: The Agent-Oriented Methodology MASCommonKADS. In: Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, pp. 46–78. IDEA Group Publishing (2005)

    Google Scholar 

  23. WEKA, http://www.cs.waikato.ac.nz/~ml/weka/index.html

  24. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  25. JADE, http://jade.tilab.com

  26. Agent Academy, https://sourceforge.net/projects/agentacademy

  27. Hall, M., Holmes, G., Frank, E.: Generating Rule Sets from Model Trees. In: Foo, N.Y. (ed.) AI 1999. LNCS (LNAI), vol. 1747, pp. 1–12. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  28. Bishop, C.M.: Neural Networks for pattern recognition. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  29. Aha, D.W., Kibler, D., Albert, M.: Instance-Based Learning Algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  30. Cleary, J., Trigg, L.: K*: An Instance-Based Learner Using an Entropic Distance Measure. In: 12th Inter. Confer. on Machine learning, pp. 108–114 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Athanasopoulou, C., Chatziathanasiou, V. (2009). Enhancing Agent Intelligence through Data Mining: A Power Plant Case Study. In: Cao, L., Gorodetsky, V., Liu, J., Weiss, G., Yu, P.S. (eds) Agents and Data Mining Interaction. ADMI 2009. Lecture Notes in Computer Science(), vol 5680. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03603-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03603-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03602-6

  • Online ISBN: 978-3-642-03603-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics