Abstract
Using tools from multi-scale morphology, we reformulate a region-based active-contour model using a minimum-variance criterion. Experimental results of 3D data show that our discrete model achieves similar segmentation quality as the continuous model based on the level-set framework, while being two orders of magnitude faster than optimized implementations of the original continuous model.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Terzopoulos, D.: Image analysis using multigrid relaxation methods. IEEE Trans. Pattern Anal. Machine Intell. 8, 129–139 (1986)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1, 321–331 (1987)
Terzopoulos, D., Witkin, A., Kass, M.: Constraints on deformable models: Recovering 3D shape and nonrigid motion. Artificial Intelligence 36, 91–123 (1988)
McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Medical Image Analysis 1, 91–108 (1996)
Suri, J., Liu, K., Singh, S., Laxminarayan, S., Zeng, X., Reden, L.: Shape recovery algorithms using level sets in 2-D/3-D medical imagery: A state of the art review. IEEE Trans. on Inf. Tech. in Biomed. 6, 8–28 (2002)
Mallet, J.L.: Discrete smooth interpolation in geometric modelling. Comp. Aided Design 24, 178–191 (1992)
Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. ACM Comput. Graph. 21, 205–214 (1987)
Paragios, N., Deriche, R.: Geodesic active contours for supervised texture segmentation. In: CVPR 1999, pp. 422–427 (1999)
Geiger, D., Gupta, A., Costa, L.A., Vlontzos, J.: Dynamic-programming for detecting, tracking, and matching deformable contours. IEEE Trans. Pattern Anal. Machine Intell. 18(5), 575 (1996)
Leymarie, F.F., Levine, M.D.: Tracking deformable objects in the plane using an active contour model. IEEE Trans. Pattern Anal. Machine Intell. 15(6), 617–634 (1993)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)
Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Trans. Pattern Anal. Machine Intell. 17, 158–175 (1995)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proc. 5th Int. Conf. Computer Vision, pp. 694–699 (1995)
Siddiqi, K., Lauziere, Y.B., Tannenbaum, A., Zucker, S.W.: Area and length minimizing flows for shape segmentation. IEEE Trans. Image Processing 7, 433–443 (1998)
Ronfard, R.: Region based strategies for active contour models. International Journal of Computer Vision 13(2) (1994)
Cohen, L.D.: On active contour methods and balloons. CVGIP: Image Understanding 53, 211–218 (1991)
Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Processing 10, 266–277 (2001)
Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Applied Mathematics 42, 577–685 (1989)
Maragos, P.: Differential morphology and image processing. IEEE Trans. Image Processing 5(6), 922–937 (1996)
Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphological filtering. IEEE Trans. Signal Processing 42(12), 3377–3386 (1994)
Merriman, B., Bence, J., Osher, S.: Diffusion generated motion by mean curvature. Technical report, UCLA (1992)
Catté, F., Dibos, F., Koepfler, G.: A morphological scheme for mean curvature motion and applications to anisotropic diffusion and motion of level sets. SIAM J. Numer. Anal. 32(6), 1895–1909 (1995)
Guichard, F., Morel, J.M.: Geometric partial differential equations and iterative filtering. In: ISMM 1998, Norwell, MA, USA, pp. 127–138. Kluwer Academic Publishers, Dordrecht (1998)
Maragos, P., Schafer, R.W.: Morphological filters. part II: Their relations to median, order-statistic, and stack filters. IEEE Trans. Acoust. Speech and Signal Processing 35, 1170–1184 (1987)
Koenderink, J.J., van Doorn, A.J.: Dynamic shape. Biol. Cybern. 53(6), 383–396 (1986)
Chaudhury, K.N., Ramakrishnan, K.R.: Stability and convergence of the level set method in computer vision. Pattern Recogn. Lett. 28(7), 884–893 (2007)
Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155(2), 410–438 (1999)
Nilsson, O., Breen, D., Museth, K.: Surface reconstruction via contour metamorphosis: An Eulerian approach with Lagrangian particle tracking. IEEE Visualization, 407–414 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jalba, A.C., Roerdink, J.B.T.M. (2009). An Efficient Morphological Active Surface Model for Volumetric Image Segmentation. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds) Mathematical Morphology and Its Application to Signal and Image Processing. ISMM 2009. Lecture Notes in Computer Science, vol 5720. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03613-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-03613-2_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03612-5
Online ISBN: 978-3-642-03613-2
eBook Packages: Computer ScienceComputer Science (R0)