Skip to main content

A Directional Rouy-Tourin Scheme for Adaptive Matrix-Valued Morphology

  • Conference paper
Mathematical Morphology and Its Application to Signal and Image Processing (ISMM 2009)

Abstract

In order to describe anisotropy in image processing models or physical measurements, matrix fields are a suitable choice. In diffusion tensor magnetic resonance imaging (DT-MRI), for example, information about the diffusive properties of water molecules is captured in symmetric positive definite matrices. The corresponding matrix field reflects the structure of the tissue under examination. Recently, morphological partial differential equations (PDEs) for dilation and erosion known for grey scale images have been extended to matrix-valued data.

In this article we consider an adaptive, PDE-driven dilation process for matrix fields. The anisotropic morphological evolution is steered with a matrix constructed from a structure tensor for matrix valued data. An important novel ingredient is a directional variant of the matrix-valued Rouy-Tourin scheme that enables our method to complete or enhance anisotropic structures effectively. Experiments with synthetic and real-world data substantiate the gap-closing and line-completing properties of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Matheron, G.: Eléments pour une théorie des milieux poreux. Masson, Paris (1967)

    Google Scholar 

  2. Serra, J.: Echantillonnage et estimation des phénomènes de transition minier. PhD thesis, University of Nancy, France (1967)

    Google Scholar 

  3. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)

    MATH  Google Scholar 

  4. Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, London (1982)

    MATH  Google Scholar 

  5. Serra, J.: Image Analysis and Mathematical Morphology, vol. 2. Academic Press, London (1988)

    Google Scholar 

  6. Soille, P.: Morphological Image Analysis, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  7. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations in image processing. Archive for Rational Mechanics and Analysis 123, 199–257 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arehart, A.B., Vincent, L., Kimia, B.B.: Mathematical morphology: The Hamilton–Jacobi connection. In: Proc. Fourth International Conference on Computer Vision, Berlin, pp. 215–219. IEEE Computer Society Press, Los Alamitos (1993)

    Google Scholar 

  9. Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphological filtering. IEEE Transactions on Signal Processing 42, 3377–3386 (1994)

    Article  Google Scholar 

  10. Sapiro, G., Kimmel, R., Shaked, D., Kimia, B.B., Bruckstein, A.M.: Implementing continuous-scale morphology via curve evolution. Pattern Recognition 26, 1363–1372 (1993)

    Article  Google Scholar 

  11. van den Boomgaard, R.: Mathematical Morphology: Extensions Towards Computer Vision. PhD thesis, University of Amsterdam, The Netherlands (1992)

    Google Scholar 

  12. Breuß, M., Weickert, J.: A shock-capturing algorithm for the differential equations of dilation and erosion. Journal of Mathematical Imaging and Vision 25(2), 187–201 (2006)

    Article  MathSciNet  Google Scholar 

  13. Verdú-Monedero, R., Angulo, J.: Spatially-variant directional mathematical morphology operators based on a diffused average squared gradient field. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 542–553. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Breuß, M., Burgeth, B., Weickert, J.: Anisotropic continuous-scale morphology. In: Martí, J., Benedí, J.M., Mendonça, A., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 515–522. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Burgeth, B., Breuß, M., Pizarro, L., Weickert, J.: PDE-driven adaptive morphology for matrix fields. In: Tai, X.-C., et al. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 247–258. Springer, Heidelberg (2009)

    Google Scholar 

  16. Burgeth, B., Didas, S., Florack, L., Weickert, J.: A generic approach to diffusion filtering of matrix-fields. Computing 81, 179–197 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM Journal on Numerical Analysis 29, 867–884 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proc. ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, June 1987, pp. 281–305 (1987)

    Google Scholar 

  19. Bigün, J., Granlund, G.H., Wiklund, J.: Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(8), 775–790 (1991)

    Article  Google Scholar 

  20. Bigün, J.: Vision with Direction. Springer, Berlin (2006)

    MATH  Google Scholar 

  21. Brox, T., Weickert, J., Burgeth, B., Mrázek, P.: Nonlinear structure tensors. Image and Vision Computing 24(1), 41–55 (2006)

    Article  Google Scholar 

  22. Feddern, C., Weickert, J., Burgeth, B., Welk, M.: Curvature-driven PDE methods for matrix-valued images. International Journal of Computer Vision 69(1), 91–103 (2006)

    Article  MATH  Google Scholar 

  23. Di Zenzo, S.: A note on the gradient of a multi-image. Computer Vision, Graphics and Image Processing 33, 116–125 (1986)

    Article  MATH  Google Scholar 

  24. Burgeth, B., Didas, S., Weickert, J.: A general structure tensor concept and coherence-enhancing diffusion filtering for matrix fields. In: Laidlaw, D., Weickert, J. (eds.): Visualization and Processing of Tensor Fields. Mathematics and Visualization, pp. 305–323. Springer, Heidelberg (2009)

    Google Scholar 

  25. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  26. Burgeth, B., Bruhn, A., Didas, S., Weickert, J., Welk, M.: Morphology for matrix-data: Ordering versus PDE-based approach. Image and Vision Computing 25(4), 496–511 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pizarro, L., Burgeth, B., Breuß, M., Weickert, J. (2009). A Directional Rouy-Tourin Scheme for Adaptive Matrix-Valued Morphology. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds) Mathematical Morphology and Its Application to Signal and Image Processing. ISMM 2009. Lecture Notes in Computer Science, vol 5720. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03613-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03613-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03612-5

  • Online ISBN: 978-3-642-03613-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics