Skip to main content

Multi-label Moves for MRFs with Truncated Convex Priors

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5681))

Abstract

Optimization with graph cuts became very popular in recent years. As more applications rely on graph cuts, different energy functions are being employed. Recent evaluation of optimization algorithms showed that the widely used swap and expansion graph cut algorithms have an excellent performance for energies where the underlying MRF has Potts prior. Potts prior corresponds to assuming that the true labeling is piecewise constant. While surprisingly useful in practice, Potts prior is clearly not appropriate in many circumstances. However for more general priors, the swap and expansion algorithms do not perform as well. Both algorithms are based on moves that give each pixel a choice of only two labels. Therefore such moves can be referred to as binary moves. Recently, range moves that act on multiple labels simultaneously were introduced. As opposed to swap and expansion, each pixel has a choice of more than two labels in a range move. Therefore we call them multi-label moves. Range moves were shown to work better for problems with truncated convex priors, which imply a piecewise smooth labeling. Inspired by range moves, we develop several different variants of multi-label moves. We evaluate them on the problem of stereo correspondence and discuss their relative merits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ishikawa, H., Geiger, D.: Occlusions, discontinuities, and epipolar lines in stereo. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, p. 232. Springer, Heidelberg (1998)

    Google Scholar 

  2. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. PAMI 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  3. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 65–81. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: CVPR, pp. 648–655 (1998)

    Google Scholar 

  5. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions via graph cuts. In: ICCV, vol. II, pp. 508–515 (2001)

    Google Scholar 

  6. Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 82–96. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Lempitsky, V., Boykov, Y., Ivanov, D.: Oriented visibility for multiview reconstruction. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 226–238. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Wills, J., Agarwal, S., Belongie, S.: What went where. In: CVPR, vol. I, pp. 37–44 (2003)

    Google Scholar 

  9. Xiao, J., Shah, M.: Motion layer extraction in the presence of occlusion using graph cuts. PAMI 27(10), 1644–1659 (2005)

    Article  Google Scholar 

  10. Schoenemann, T., Cremers, D.: High resolution motion layer decomposition using dual-space graph cuts. In: CVPR, pp. 1–7 (2008)

    Google Scholar 

  11. Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: Image and video synthesis using graph cuts. ACM Transactions on Graphics, SIGGRAPH 2003 22(3), 277–286 (2003)

    Article  Google Scholar 

  12. Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: ICCV, vol. I, pp. 105–112 (2001)

    Google Scholar 

  13. Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Interactive image segmentation using an adaptive GMMRF model. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 428–441. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching: Incorporating a global constraint into mrfs. In: CVPR, vol. I, pp. 993–1000 (2006)

    Google Scholar 

  15. Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Probabilistic fusion of stereo with color and contrast for bilayer segmentation. PAMI 28(9), 1480–1492 (2006)

    Article  MATH  Google Scholar 

  16. Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin, D., Cohen, M.: Iteractive digital photomontage. In: ACM Transactions on Graphics, SIGGRAPH (2004)

    Google Scholar 

  17. Ishikawa, H.: Exact optimization for markov random fields with convex priors. PAMI 25(10), 1333–1336 (2003)

    Article  Google Scholar 

  18. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Transacions on Pattern Analysis and Machine Intellegence 30(6), 1068–1080 (2008)

    Article  Google Scholar 

  19. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. PAMI 28(10), 1568–1583 (2006)

    Article  Google Scholar 

  20. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  21. Kolmogorov, V., Rother, C.: Comparison of energy minimization algorithms for highly connected graphs. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 1–15. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Veksler, O.: Graph cut based optimization for mrfs with truncated convex priors. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  23. Liu, X., Veksler, O., Samarabandu, J.: Graph cut with ordering constraints on labels and its applications. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  24. Kumar, M.P., Torr, P.H.S.: Improved moves for truncated convex models. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 21, pp. 889–896 (2009)

    Google Scholar 

  25. Torr, P.H.S.: In: Personal communication (2008)

    Google Scholar 

  26. Hunter, D.R., Lange, K.: A tutorial on MM algorithms. The American Statistician (58) (2004)

    Google Scholar 

  27. Schlesinger, D., Flach, B.: Transforming an arbitrary minsum problem into a binary one. Technical Report TUD-FI06-01, Dresden University of Technology (2006)

    Google Scholar 

  28. Darbon, J.: Global optimization for first order markov random fields with submodular priors. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA 2008. LNCS, vol. 4958, pp. 229–237. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Kolmogorov, V.: Primal-dual algorithm for convex markov random fields. Technical Report MSR-TR-2005-117, Microsoft (2005)

    Google Scholar 

  30. Rother, C., Kumar, S., Kolmogorov, V., Blake, A.: Digital tapestry. In: CVPR, vol. I, pp. 589–596 (2005)

    Google Scholar 

  31. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 47(1-3), 7–42 (2002)

    Article  MATH  Google Scholar 

  32. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: CVPR, vol. I, pp. 195–202 (2003)

    Google Scholar 

  33. Alahari, K., Kohli, P., Torr, P.: Reduce, reuse, recycle: Efficiently solving multi-label mrfs. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Veksler, O. (2009). Multi-label Moves for MRFs with Truncated Convex Priors. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2009. Lecture Notes in Computer Science, vol 5681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03641-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03641-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03640-8

  • Online ISBN: 978-3-642-03641-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics